Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability
- URL: http://arxiv.org/abs/2406.02496v1
- Date: Tue, 4 Jun 2024 17:14:31 GMT
- Title: Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability
- Authors: Kunpeng Xu, Lifei Chen, Shengrui Wang,
- Abstract summary: Kolmogorov-Arnold Networks (KAN) is a groundbreaking model recently proposed by the MIT team.
KAN is designed to detect concept drift within time series and can explain the nonlinear relationships between predictions and previous time steps.
T-KAN is designed to detect concept drift within time series and can explain the nonlinear relationships between predictions and previous time steps.
MT-KAN, on the other hand, improves predictive performance by effectively uncovering and leveraging the complex relationships among variables.
- Score: 6.4314326272535896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Kolmogorov-Arnold Networks (KAN) is a groundbreaking model recently proposed by the MIT team, representing a revolutionary approach with the potential to be a game-changer in the field. This innovative concept has rapidly garnered worldwide interest within the AI community. Inspired by the Kolmogorov-Arnold representation theorem, KAN utilizes spline-parametrized univariate functions in place of traditional linear weights, enabling them to dynamically learn activation patterns and significantly enhancing interpretability. In this paper, we explore the application of KAN to time series forecasting and propose two variants: T-KAN and MT-KAN. T-KAN is designed to detect concept drift within time series and can explain the nonlinear relationships between predictions and previous time steps through symbolic regression, making it highly interpretable in dynamically changing environments. MT-KAN, on the other hand, improves predictive performance by effectively uncovering and leveraging the complex relationships among variables in multivariate time series. Experiments validate the effectiveness of these approaches, demonstrating that T-KAN and MT-KAN significantly outperform traditional methods in time series forecasting tasks, not only enhancing predictive accuracy but also improving model interpretability. This research opens new avenues for adaptive forecasting models, highlighting the potential of KAN as a powerful and interpretable tool in predictive analytics.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - KAN4TSF: Are KAN and KAN-based models Effective for Time Series Forecasting? [20.483074918879133]
We introduce the Kolmogorov-Arnold Network (KAN) into time series forecasting research.
We propose the Reversible Mixture of KAN experts (RMoK) model, which is a KAN-based model for time series forecasting.
We find the relationship between temporal feature weights and data periodicity through visualization.
arXiv Detail & Related papers (2024-08-21T03:21:52Z) - Kolmogorov-Arnold Networks (KANs) for Time Series Analysis [6.932243286441558]
We introduce a novel application of Kolmogorov-Arnold Networks (KANs) to time series forecasting.
Inspired by the Kolmogorov-Arnold representation theorem, KANs replace traditional linear weights with spline-parametrized univariate functions.
We demonstrate that KANs outperforms conventional Multi-Layer Perceptrons (MLPs) in a real-world satellite traffic forecasting task.
arXiv Detail & Related papers (2024-05-14T17:38:17Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Contextually Enhanced ES-dRNN with Dynamic Attention for Short-Term Load
Forecasting [1.1602089225841632]
The proposed model is composed of two simultaneously trained tracks: the context track and the main track.
The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive recurrent cells.
The model produces both point forecasts and predictive intervals.
arXiv Detail & Related papers (2022-12-18T07:42:48Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.