論文の概要: DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering
- arxiv url: http://arxiv.org/abs/2406.02518v1
- Date: Tue, 4 Jun 2024 17:39:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:00:23.982393
- Title: DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering
- Title(参考訳): DDGS-CT:実数量レンダリングのための方向差ガウススプラッティング
- Authors: Zhongpai Gao, Benjamin Planche, Meng Zheng, Xiao Chen, Terrence Chen, Ziyan Wu,
- Abstract要約: デジタル再構成ラジオグラフィ(DRR)は3次元CTボリュームから生成された2次元X線画像である。
そこで本研究では, DRR 生成を効率よく, 微分可能な DRR 生成で実現し, 現実的な物理にインスパイアされた X-ray シミュレーションを取り入れた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 30.30749508345767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes, widely used in preoperative settings but limited in intraoperative applications due to computational bottlenecks, especially for accurate but heavy physics-based Monte Carlo methods. While analytical DRR renderers offer greater efficiency, they overlook anisotropic X-ray image formation phenomena, such as Compton scattering. We present a novel approach that marries realistic physics-inspired X-ray simulation with efficient, differentiable DRR generation using 3D Gaussian splatting (3DGS). Our direction-disentangled 3DGS (DDGS) method separates the radiosity contribution into isotropic and direction-dependent components, approximating complex anisotropic interactions without intricate runtime simulations. Additionally, we adapt the 3DGS initialization to account for tomography data properties, enhancing accuracy and efficiency. Our method outperforms state-of-the-art techniques in image accuracy. Furthermore, our DDGS shows promise for intraoperative applications and inverse problems such as pose registration, delivering superior registration accuracy and runtime performance compared to analytical DRR methods.
- Abstract(参考訳): デジタル再構成されたX線写真(DRR)は3次元CTボリュームから生成された2次元X線画像で、術前設定では広く用いられているが、計算ボトルネックによる術中応用には限られている。
解析的DRRレンダラーは効率が良いが、コンプトン散乱のような異方性X線画像形成現象を見落としている。
本稿では, 3次元ガウススプラッティング(3DGS)を用いたDRR生成を効率よく, 微分可能とし, 現実的な物理に触発されたX線シミュレーションを取り入れた新しい手法を提案する。
我々の方向異方性3DGS(DDGS)法は、放射能寄与を等方性と方向依存成分に分離し、複雑な異方性相互作用を複雑な実行時シミュレーションなしで近似する。
さらに、トモグラフィデータ特性を考慮した3DGS初期化を適応させ、精度と効率を向上する。
本手法は,画像の精度において最先端技術より優れる。
さらに, DDGSは, DRR法と比較して, ポーズ登録や登録精度, 実行時性能など, 術中および逆問題への期待を示す。
関連論文リスト
- 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images [49.170407434313475]
既存の手法は、しばしば最適以下の結果を生成するか、過剰な計算時間を必要とする。
高品質な高精細化を実現するため、4次元ガウススプラッティング(4DRGS)を提案する。
4DRGSは5分間のトレーニングで印象的な結果を得る。
論文 参考訳(メタデータ) (2024-12-17T13:51:56Z) - DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models [67.50989119438508]
本稿では,ガウスをベースとしたレコンストラクタを用いて,リアルな3Dアセットを生成することで,マルチビュー画像を直接認識するDSplatを紹介した。
実験の結果,DSplatsは高品質で空間的に一貫した出力を生成できるだけでなく,単一画像から3次元再構成への新たな標準も設定できることがわかった。
論文 参考訳(メタデータ) (2024-12-11T07:32:17Z) - Unsupervised Multi-Parameter Inverse Solving for Reducing Ring Artifacts in 3D X-Ray CBCT [35.73129314731503]
リングアーティファクトは、X線検出器の非理想的応答により、3DコーンビームCT(CBCT)で一般的である。
現在の最先端(SOTA)リングアーティファクトリダクション(RAR)アルゴリズムは、教師あり学習のための広範なペアCTサンプルに依存している。
マルチパラメータ逆問題として3次元CBCT RARを定式化した教師なしの textbfRiner を導入する。
論文 参考訳(メタデータ) (2024-12-08T08:22:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - End-to-End Rate-Distortion Optimized 3D Gaussian Representation [33.20840558425759]
本稿では,コンパクトな3次元ガウス学習をエンドツーエンドのレート・ディストーション最適化問題として定式化する。
動的プルーニングとエントロピー制約ベクトル量子化(ECVQ)を導入し、同時に速度と歪みを最適化する。
RDO-Gaussianが40倍の3Dガウスサイズを大幅に縮小することを示すため,実シーンと合成シーンの両方で本手法の有効性を確認した。
論文 参考訳(メタデータ) (2024-04-09T14:37:54Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Plug-and-Play Regularization on Magnitude with Deep Priors for 3D Near-Field MIMO Imaging [0.0]
近接場レーダイメージングシステムは、隠蔽兵器の検出や医療診断など、幅広い用途で使用されている。
3次元複素数値反射率の問題は、その大きさに対して正則化を強制することによるものである。
論文 参考訳(メタデータ) (2023-12-26T12:25:09Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CTは従来のCTスキャンの放射線線量を減らすための有望な戦略である。
近年、3Dガウスアンは複雑な自然シーンのモデル化に応用されている。
スパース・ビューCT再建の可能性について検討した。
論文 参考訳(メタデータ) (2023-12-25T09:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。