論文の概要: Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset
- arxiv url: http://arxiv.org/abs/2502.12382v1
- Date: Mon, 17 Feb 2025 23:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:28.948684
- Title: Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset
- Title(参考訳): IoTにおける侵入検出のためのハイブリッド機械学習モデル:実世界のIoTデータセットを活用する
- Authors: Md Ahnaf Akif, Ismail Butun, Andre Williams, Imadeldin Mahgoub,
- Abstract要約: これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid growth of the Internet of Things (IoT) has revolutionized industries, enabling unprecedented connectivity and functionality. However, this expansion also increases vulnerabilities, exposing IoT networks to increasingly sophisticated cyberattacks. Intrusion Detection Systems (IDS) are crucial for mitigating these threats, and recent advancements in Machine Learning (ML) offer promising avenues for improvement. This research explores a hybrid approach, combining several standalone ML models such as Random Forest (RF), XGBoost, K-Nearest Neighbors (KNN), and AdaBoost, in a voting-based hybrid classifier for effective IoT intrusion detection. This ensemble method leverages the strengths of individual algorithms to enhance accuracy and address challenges related to data complexity and scalability. Using the widely-cited IoT-23 dataset, a prominent benchmark in IoT cybersecurity research, we evaluate our hybrid classifiers for both binary and multi-class intrusion detection problems, ensuring a fair comparison with existing literature. Results demonstrate that our proposed hybrid models, designed for robustness and scalability, outperform standalone approaches in IoT environments. This work contributes to the development of advanced, intelligent IDS frameworks capable of addressing evolving cyber threats.
- Abstract(参考訳): IoT(Internet of Things)の急速な成長は産業に革命をもたらし、前例のない接続性と機能を可能にした。
しかし、この拡張により脆弱性が増加し、IoTネットワークがますます高度なサイバー攻撃に晒される。
侵入検知システム(IDS)は、これらの脅威を軽減し、機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究では、ランダムフォレスト(RF)、XGBoost、K-Nearest Neighbors(KNN)、AdaBoostなどのスタンドアロンMLモデルを、効果的なIoT侵入検出のための投票ベースのハイブリッド分類器に組み合わせ、ハイブリッドアプローチを検討する。
このアンサンブル法は、個々のアルゴリズムの強みを活用して精度を高め、データの複雑さとスケーラビリティに関わる課題に対処する。
IoTサイバーセキュリティ研究において顕著なベンチマークである、広く推奨されているIoT-23データセットを使用して、バイナリとマルチクラスの侵入検出問題の両方に対して、ハイブリッド分類器を評価し、既存の文献と公正な比較を確実にする。
提案したハイブリッドモデルは、堅牢性とスケーラビリティのために設計され、IoT環境におけるスタンドアロンアプローチよりも優れています。
この研究は、進化するサイバー脅威に対処できる高度なインテリジェントIDSフレームワークの開発に寄与する。
関連論文リスト
- Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning [0.0]
侵入検知システム(IDS)は,異常なネットワーク行動や悪質な活動の検出・防止に不可欠である。
本研究は,次元縮小のためのオートエンコーダの活用を含む,IDS性能向上のための6つの革新的なアプローチを実装した。
我々はJetson Nano上で最初にモデルをデプロイし、バイナリ分類では0.185ms、マルチクラス分類では0.187msの推論時間を達成する。
論文 参考訳(メタデータ) (2025-01-25T16:24:18Z) - Smooth Handovers via Smoothed Online Learning [48.953313950521746]
まず、欧州の商用モバイルネットワークオペレータ(MNO)から4000万人以上のユーザを対象に、HOに対する重要な特徴とパフォーマンスへの影響を理解し、明らかにするために、広範なデータセットを分析した。
本研究は, HO故障/遅延と無線セルとエンドユーザーデバイスの特徴の相関関係を明らかにする。
本稿では,HO最適化にデバイスとセルの機能を組み込むことで,既存のアプローチを拡張したスムーズで高精度なHOのための現実的なシステムモデルを提案する。
論文 参考訳(メタデータ) (2025-01-14T13:16:33Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
本稿では,KAN(Kolmogorov-Arnold Networks)とXGBoostアルゴリズムを組み合わせたハイブリッド侵入検知システムを提案する。
提案したIDSは,学習可能なアクティベーション関数を用いてデータ内の複雑な関係をモデル化し,XGBoostの強力なアンサンブル学習手法と併用する。
実験により,我々のハイブリッドIDSは,良性行動と悪意行動の区別において,99%以上の精度で検出できることがわかった。
論文 参考訳(メタデータ) (2024-08-28T15:58:49Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
本稿では,Deep Learning-integrated Convolutional Neural Networks (CNN) とLong Short-Term Memory (LSTM) ネットワークを用いたモノのインターネット(IoT)環境侵入検知システム(IDS)の革新的な設計を提案する。
われわれのモデルはCICIDS 2017データセットに基づいて、ネットワークトラフィックを良性または悪意のいずれかとして分類する精度99.52%を達成した。
論文 参考訳(メタデータ) (2024-06-18T08:42:51Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。