LADI v2: Multi-label Dataset and Classifiers for Low-Altitude Disaster Imagery
- URL: http://arxiv.org/abs/2406.02780v1
- Date: Tue, 4 Jun 2024 20:51:04 GMT
- Title: LADI v2: Multi-label Dataset and Classifiers for Low-Altitude Disaster Imagery
- Authors: Samuel Scheele, Katherine Picchione, Jeffrey Liu,
- Abstract summary: We present the LADI v2 dataset, a curated set of about 10,000 disaster images captured in the United States by the Civil Air Patrol.
We provide two pretrained baseline classifiers and compare their performance to state-of-the-art vision-language models in multi-label classification.
The data and code are released publicly to support the development of computer vision models for emergency management research and applications.
- Score: 0.23108201502462672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ML-based computer vision models are promising tools for supporting emergency management operations following natural disasters. Arial photographs taken from small manned and unmanned aircraft can be available soon after a disaster and provide valuable information from multiple perspectives for situational awareness and damage assessment applications. However, emergency managers often face challenges finding the most relevant photos among the tens of thousands that may be taken after an incident. While ML-based solutions could enable more effective use of aerial photographs, there is still a lack of training data for imagery of this type from multiple perspectives and for multiple hazard types. To address this, we present the LADI v2 (Low Altitude Disaster Imagery version 2) dataset, a curated set of about 10,000 disaster images captured in the United States by the Civil Air Patrol (CAP) in response to federally-declared emergencies (2015-2023) and annotated for multi-label classification by trained CAP volunteers. We also provide two pretrained baseline classifiers and compare their performance to state-of-the-art vision-language models in multi-label classification. The data and code are released publicly to support the development of computer vision models for emergency management research and applications.
Related papers
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM)
Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM.
This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid.
arXiv Detail & Related papers (2024-06-16T23:01:10Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
We leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images.
We build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains.
We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings.
arXiv Detail & Related papers (2024-05-22T16:07:05Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
We present a novel approach to automatically assess multi-class building damage from real-world point clouds.
We use a machine learning model trained on virtual laser scanning (VLS) data.
The model yields high multi-target classification accuracies (overall accuracy: 92.0% - 95.1%)
arXiv Detail & Related papers (2023-02-24T12:04:46Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery.
The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey.
arXiv Detail & Related papers (2022-08-06T01:04:13Z) - GaLeNet: Multimodal Learning for Disaster Prediction, Management and
Relief [2.007385102792989]
We propose a multimodal framework (GaLeNet) for assessing the severity of damage by complementing pre-disaster images with weather data and the trajectory of the hurricane.
We show that GaLeNet can leverage pre-disaster images in the absence of post-disaster images, preventing substantial delays in decision making.
arXiv Detail & Related papers (2022-06-18T16:45:57Z) - Incidents1M: a large-scale dataset of images with natural disasters,
damage, and incidents [28.16346818821349]
Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming.
It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events.
Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods.
In this work, we present the Incidents1M dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories.
arXiv Detail & Related papers (2022-01-11T23:03:57Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter.
Using transfer learning and 6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene.
The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey.
arXiv Detail & Related papers (2021-10-12T06:31:54Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - Deep Learning Benchmarks and Datasets for Social Media Image
Classification for Disaster Response [5.610924570214424]
We propose new datasets for disaster type detection, informativeness classification, and damage severity assessment.
We benchmark several state-of-the-art deep learning models and achieve promising results.
We release our datasets and models publicly, aiming to provide proper baselines as well as to spur further research in the crisis informatics community.
arXiv Detail & Related papers (2020-11-17T20:15:49Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.