論文の概要: P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks
- arxiv url: http://arxiv.org/abs/2406.02923v2
- Date: Thu, 03 Oct 2024 18:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:07:36.897459
- Title: P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks
- Title(参考訳): P-SpikeSSM:長距離依存タスクのための確率的スパイク状態モデル
- Authors: Malyaban Bal, Abhronil Sengupta,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発した。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
- 参考スコア(独自算出の注目度): 1.9775291915550175
- License:
- Abstract: Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures, with their core computational framework primarily using the leaky integrate-and-fire (LIF) neuron model. However, the limited hidden state representation of LIF neurons, characterized by a scalar membrane potential, and sequential spike generation process, poses challenges for effectively developing scalable spiking models to address long-range dependencies in sequence learning tasks. In this study, we develop a scalable probabilistic spiking learning framework for long-range dependency tasks leveraging the fundamentals of state space models. Unlike LIF neurons that rely on the determinitic Heaviside function for a sequential process of spike generation, we introduce a SpikeSampler layer that samples spikes stochastically based on an SSM-based neuronal model while allowing parallel computations. To address non-differentiability of the spiking operation and enable effective training, we also propose a surrogate function tailored for the stochastic nature of the SpikeSampler layer. To enhance inter-neuron communication, we introduce the SpikeMixer block, which integrates spikes from neuron populations in each layer. This is followed by a ClampFuse layer, incorporating a residual connection to capture complex dependencies, enabling scalability of the model. Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks, encompassing the Long Range Arena benchmark, permuted sequential MNIST, and the Speech Command dataset and demonstrate sparse spiking pattern highlighting its computational efficiency.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
しかし、スカラー膜電位とシーケンシャルスパイク生成過程を特徴とするLIFニューロンの限られた隠れ状態表現は、シーケンシャルラーニングタスクにおける長距離依存性に対処するスケーラブルスパイキングモデルを効果的に開発するための課題を提起する。
本研究では、状態空間モデルの基本を活かした長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発する。
逐次的なスパイク生成のプロセスで決定的ヘビサイド関数に依存するLIFニューロンとは異なり、SSMベースのニューロンモデルに基づいて確率的にスパイクをサンプリングするスパイクサンプラー層を導入し、並列計算を可能にする。
スパイキング動作の非微分性に対処し,効果的な訓練を可能にするために,スパイクサンプラー層の確率的性質に適した代理関数を提案する。
ニューロン間通信を強化するために,各層におけるニューロン集団からのスパイクを統合するSpikeMixerブロックを導入する。
この後、ClarmpFuseレイヤが続き、複雑な依存関係をキャプチャするための残余接続が組み込まれ、モデルのスケーラビリティが実現される。
我々のモデルは、Long Range Arenaベンチマーク、permuted sequence MNIST、Speech Commandデータセットを含む、様々な長距離依存タスクにおけるSNNモデル間の最先端性能を達成し、その計算効率を浮き彫りにするスパーススパイクパターンを実証する。
関連論文リスト
- SPikE-SSM: A Sparse, Precise, and Efficient Spiking State Space Model for Long Sequences Learning [21.37966285950504]
スパイキングニューラルネットワーク(SNN)は、生物学的システムのスパイクベースおよびスパースの性質を活用することにより、エネルギー効率のよいソリューションを提供する。
最近の状態空間モデル(SSM)は計算効率とモデリング能力に優れる。
本研究では,SPikE-SSMと呼ばれる,スパースで高精度かつ効率的なスパイクSSMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-07T12:20:38Z) - SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models [19.04709216497077]
長いシーケンス学習のためのスパイキング状態空間モデル(SpikingSSM)を開発した。
樹状ニューロン構造にインスパイアされた我々は、神経力学を元のSSMブロックと階層的に統合する。
そこで本研究では,リセット後の膜電位を正確に予測し,学習可能なしきい値に適合する軽量サロゲート動的ネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T09:35:49Z) - EAS-SNN: End-to-End Adaptive Sampling and Representation for Event-based Detection with Recurrent Spiking Neural Networks [14.046487518350792]
スパイキングニューラルネットワーク(SNN)は、スパーススパイク通信を通じてイベント駆動の操作を行う。
本稿では,Residual potential Dropout (RPD) と Spike-Aware Training (SAT) を導入する。
我々の方法では、Gen1データセットで4.4%のmAP改善が得られ、パラメータは38%減少し、3つのタイムステップしか必要としない。
論文 参考訳(メタデータ) (2024-03-19T09:34:11Z) - Unleashing the Potential of Spiking Neural Networks for Sequential
Modeling with Contextual Embedding [32.25788551849627]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、長期的な時間的関係をモデル化する上で、生物学的に競合するものと一致しようと苦労してきた。
本稿では,新しい文脈埋め込みLeaky Integrate-and-Fire(CE-LIF)スパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-29T09:33:10Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。