論文の概要: SPikE-SSM: A Sparse, Precise, and Efficient Spiking State Space Model for Long Sequences Learning
- arxiv url: http://arxiv.org/abs/2410.17268v1
- Date: Mon, 07 Oct 2024 12:20:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:41:03.454388
- Title: SPikE-SSM: A Sparse, Precise, and Efficient Spiking State Space Model for Long Sequences Learning
- Title(参考訳): SPikE-SSM:長期学習のためのスパース・高精度・効率的なスパイキング状態空間モデル
- Authors: Yan Zhong, Ruoyu Zhao, Chao Wang, Qinghai Guo, Jianguo Zhang, Zhichao Lu, Luziwei Leng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的システムのスパイクベースおよびスパースの性質を活用することにより、エネルギー効率のよいソリューションを提供する。
最近の状態空間モデル(SSM)は計算効率とモデリング能力に優れる。
本研究では,SPikE-SSMと呼ばれる,スパースで高精度かつ効率的なスパイクSSMフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.37966285950504
- License:
- Abstract: Spiking neural networks (SNNs) provide an energy-efficient solution by utilizing the spike-based and sparse nature of biological systems. Since the advent of Transformers, SNNs have struggled to compete with artificial networks on long sequential tasks, until the recent emergence of state space models (SSMs), which offer superior computational efficiency and modeling capability. However, applying the highly capable SSMs to SNNs for long sequences learning poses three major challenges: (1) The membrane potential is determined by the past spiking history of the neuron, leading to reduced efficiency for sequence modeling in parallel computing scenarios. (2) Complex dynamics of biological spiking neurons are crucial for functionality but challenging to simulate and exploit effectively in large networks. (3) It is arduous to maintain high sparsity while achieving high accuracy for spiking neurons without resorting to dense computing, as utilized in artificial neuron-based SSMs. To address them, we propose a sparse, precise and efficient spiking SSM framework, termed SPikE-SSM. For (1), we propose a boundary compression strategy (PMBC) to accelerate the inference of the spiking neuron model, enabling parallel processing for long sequence learning. For (2), we propose a novel and concise neuron model incorporating reset-refractory mechanism to leverage the inherent temporal dimension for dynamic computing with biological interpretability. For (3), we hierarchically integrate the proposed neuron model to the original SSM block, and enhance the dynamics of SPikE-SSM by incorporating trainable thresholds and refractory magnitudes to balance accuracy and sparsity. Extensive experiments verify the effectiveness and robustness of SPikE-SSM on the long range arena benchmarks and large language dataset WikiText-103, showing the potential of dynamic spiking neurons in efficient long sequence learning.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、生物学的システムのスパイクベースおよびスパースの性質を活用することにより、エネルギー効率のよいソリューションを提供する。
トランスフォーマーの出現以来、SNNは、より優れた計算効率とモデリング能力を提供する状態空間モデル(SSM)が最近出現するまで、長いシーケンシャルなタスクで人工ネットワークと競合することに苦労してきた。
しかし、長いシーケンス学習のために高機能なSSMをSNNに適用すると、(1)膜電位はニューロンの過去のスパイク履歴によって決定され、並列コンピューティングシナリオにおけるシーケンスモデリングの効率が低下する。
2) 生物学的スパイキングニューロンの複雑なダイナミクスは機能には不可欠であるが, 大規模ネットワークにおいて効果的にシミュレートし, 活用することが困難である。
(3) 人工ニューロンを用いたSSMでは, 密度計算に頼らずに, スパイクニューロンの精度を高く保ちながら高い空間性を維持することは困難である。
そこで本研究では,SPikE-SSMと呼ばれる,スパースで高精度かつ効率的なスパイクSSMフレームワークを提案する。
1) スパイキングニューロンモデルの推論を高速化するための境界圧縮戦略(PMBC)を提案する。
本稿では,リセット・リフラクトリー機構を取り入れた新しいニューロンモデルを提案する。
(3) では,提案したニューロンモデルを元のSSMブロックに階層的に統合し,トレーニング可能なしきい値と屈折率を組み込むことで,SPikE-SSMのダイナミックスを向上させる。
SPikE-SSM の長距離アリーナベンチマークと大規模言語データセット WikiText-103 における有効性とロバスト性を検証する実験により、効率的な長周期学習における動的スパイキングニューロンの可能性を示す。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models [19.04709216497077]
長いシーケンス学習のためのスパイキング状態空間モデル(SpikingSSM)を開発した。
樹状ニューロン構造にインスパイアされた我々は、神経力学を元のSSMブロックと階層的に統合する。
そこで本研究では,リセット後の膜電位を正確に予測し,学習可能なしきい値に適合する軽量サロゲート動的ネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T09:35:49Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる計算効率が高く生物学的に妥当な代替品として提案されている。
長距離依存タスクのためのスケーラブルな確率的スパイク学習フレームワークを開発した。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T04:23:11Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Unleashing the Potential of Spiking Neural Networks for Sequential
Modeling with Contextual Embedding [32.25788551849627]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、長期的な時間的関係をモデル化する上で、生物学的に競合するものと一致しようと苦労してきた。
本稿では,新しい文脈埋め込みLeaky Integrate-and-Fire(CE-LIF)スパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-29T09:33:10Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。