論文の概要: Adversarial Moment-Matching Distillation of Large Language Models
- arxiv url: http://arxiv.org/abs/2406.02959v1
- Date: Wed, 5 Jun 2024 05:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 19:49:25.173712
- Title: Adversarial Moment-Matching Distillation of Large Language Models
- Title(参考訳): 大規模言語モデルの逆モーメントマッチング蒸留
- Authors: Chen Jia,
- Abstract要約: 知識蒸留(KD)は、より大きな教師モデルで学生モデルを導くのに非常に効果的であることが示されている。
そこで本稿では,モーメントマッチング距離を推定し,学生のポリシーを最適化して最小化するための逆トレーニングアルゴリズムを提案する。
タスクに依存しない指示追従実験とタスク固有の実験の両方の結果から,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 3.9160947065896803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation (KD) has been shown to be highly effective in guiding a student model with a larger teacher model and achieving practical benefits in improving the computational and memory efficiency for large language models (LLMs). State-of-the-art KD methods for LLMs mostly rely on minimizing explicit distribution distance between teacher and student probability predictions. Instead of optimizing these mandatory behaviour cloning objectives, we explore an imitation learning strategy for KD of LLMs. In particular, we minimize the imitation gap by matching the action-value moments of the teacher's behavior from both on- and off-policy perspectives. To achieve this action-value moment-matching goal, we propose an adversarial training algorithm to jointly estimate the moment-matching distance and optimize the student policy to minimize it. Results from both task-agnostic instruction-following experiments and task-specific experiments demonstrate the effectiveness of our method and achieve new state-of-the-art performance.
- Abstract(参考訳): 知識蒸留(KD)は、より大きな教師モデルで学生モデルを指導し、大規模言語モデル(LLM)の計算と記憶効率を改善する実践的な利点を享受する上で、非常に効果的であることが示されている。
LLMの最先端KD法は、主に教師と学生の確率予測の間の明示的な分布距離の最小化に頼っている。
本研究では,これらの強制行動のクローン化目的を最適化する代わりに,LLMのKDの模倣学習戦略を検討する。
特に,教師の行動の行動価値モーメントをオン・アンド・オフ・ポリティクスの観点から一致させることにより,模倣ギャップを最小化する。
このアクション値のモーメントマッチング目標を達成するために,モーメントマッチング距離を推定し,学生のポリシーを最適化して最小化するための逆トレーニングアルゴリズムを提案する。
タスクに依存しない命令追従実験とタスク固有の実験の両方の結果は,本手法の有効性を実証し,新しい最先端性能を実現する。
関連論文リスト
- Relational Representation Distillation [6.24302896438145]
本稿では,複雑な知識の効率的な伝達を保証するためにRepresentation Distillation (RRD)を導入する。
自己監督学習の原則に触発されて、正確な複製よりも類似性に焦点を当てた、リラックスした対照的な損失を使用する。
提案手法はCIFAR-100よりも優れており,従来のKD技術より優れ,最先端手法は13を超える。
論文 参考訳(メタデータ) (2024-07-16T14:56:13Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLMは自動回帰言語モデルのためのより効率的で効率的なKDフレームワークである。
DisiLLMは,(1)新しいスキューKulback-Leibler分散損失,(2)学生生成出力の効率向上を目的とした適応型オフ政治アプローチの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-02-06T11:10:35Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
観察からの模倣学習は、人間の学習と同様の方法で政策学習を記述する。
本稿では,解釈可能な収束度と性能測定値とともに,非逆学習型観測手法を提案する。
論文 参考訳(メタデータ) (2022-02-09T08:38:50Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
政策状態の訪問分布と目標分布とのワッサースタイン-1距離が強化学習タスクに有効に活用できるかどうかを検討する。
我々のアプローチは、AIM (Adversarial Intrinsic Motivation) と呼ばれ、このワッサーシュタイン-1距離をその双対目的を通して推定し、補足報酬関数を計算する。
論文 参考訳(メタデータ) (2021-05-27T17:51:34Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
学習したモデルが不正確であり、計画が損なわれ、パフォーマンスが悪くなるのは実際には一般的です。
本稿では,真の力学と学習力学の相違を考慮に入れた重要サンプリングフレームワークによる計画の改善を目的とする。
論文 参考訳(メタデータ) (2021-03-24T06:01:55Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
モデルに基づく対向メタ強化学習(AdMRL)を提案する。
AdMRLは、タスクファミリ内のすべてのタスク間の最悪の部分最適化ギャップを最小限にすることを目的としている。
本手法をいくつかの連続制御ベンチマークで評価し,全てのタスクに対して最悪の性能を示す。
論文 参考訳(メタデータ) (2020-06-16T02:21:49Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。