Simplification of tensor updates toward performance-complexity balanced quantum computer simulation
- URL: http://arxiv.org/abs/2406.03010v1
- Date: Wed, 5 Jun 2024 07:18:28 GMT
- Title: Simplification of tensor updates toward performance-complexity balanced quantum computer simulation
- Authors: Koichi Yanagisawa, Aruto Hosaka, Tsuyoshi Yoshida,
- Abstract summary: This work studies the tensor updates simplification in the context of the tensor network based quantum computer simulation.
According to the numerical simulations, a method called simple update, also originated in quantum many-body spin systems, shows a good balance of the fidelity and the computational complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor network methods have evolved from solving optimization problems in quantum many-body spin systems. While the tensor network is now regarded as a powerful tool in quantum computer simulation, there still exists a complexity issue in updating the tensors. This work studies the tensor updates simplification in the context of the tensor network based quantum computer simulation. According to the numerical simulations, a method called simple update, also originated in quantum many-body spin systems, shows a good balance of the fidelity and the computational complexity.
Related papers
- A Matrix Product State Model for Simultaneous Classification and Generation [0.8192907805418583]
Quantum machine learning (QML) is a rapidly expanding field that merges the principles of quantum computing with the techniques of machine learning.
Here, we present a novel matrix product state (MPS) model, where the MPS functions as both a classifier and a generator.
Our contributions offer insights into the mechanics of tensor network methods for generation tasks.
arXiv Detail & Related papers (2024-06-25T10:23:36Z) - Supercomputing tensor networks for U(1) symmetric quantum many-body
systems [8.948668614549659]
tensor network algorithms can exploit the inherent symmetries of the underlying quantum systems.
We provide a state-of-the-art, graphical processing unit-accelerated, and highly parallel supercomputer implementation of the tensor network algorithm.
arXiv Detail & Related papers (2023-03-20T19:33:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - RosneT: A Block Tensor Algebra Library for Out-of-Core Quantum Computing
Simulation [0.18472148461613155]
We present RosneT, a library for distributed, out-of-core block tensor algebra.
We use the PyCOMPSs programming model to transform tensor operations into a collection of tasks handled by the COMPSs runtime.
We report results validating our approach showing good scalability in simulations of Quantum circuits of up to 53 qubits.
arXiv Detail & Related papers (2022-01-17T20:35:40Z) - TensorLy-Quantum: Quantum Machine Learning with Tensor Methods [67.29221827422164]
We create a Python library for quantum circuit simulation that adopts the PyTorch API.
Ly-Quantum can scale to hundreds of qubits on a single GPU and thousands of qubits on multiple GPU.
arXiv Detail & Related papers (2021-12-19T19:26:17Z) - Tensor Networks for Simulating Quantum Circuits on FPGAs [0.0]
Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers.
One way to accelerate such a simulation is to use field programmable gate array (FPGA) hardware to efficiently compute the matrix multiplications.
One way to potentially reduce the memory footprint of a quantum computing system is to represent it as a tensor network.
arXiv Detail & Related papers (2021-08-15T22:43:38Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation [1.4416132811087747]
We propose a parallel algorithm for the contraction of tensor networks using probabilistic models.
We apply the resulting algorithm to the simulation of random quantum circuits.
arXiv Detail & Related papers (2020-04-22T23:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.