Tensor networks for quantum computing
- URL: http://arxiv.org/abs/2503.08626v1
- Date: Tue, 11 Mar 2025 17:10:41 GMT
- Title: Tensor networks for quantum computing
- Authors: Aleksandr Berezutskii, Atithi Acharya, Roman Ellerbrock, Johnnie Gray, Reza Haghshenas, Zichang He, Abid Khan, Viacheslav Kuzmin, Minzhao Liu, Dmitry Lyakh, Danylo Lykov, Salvatore MandrĂ , Christopher Mansell, Alexey Melnikov, Artem Melnikov, Vladimir Mironov, Dmitry Morozov, Florian Neukart, Alberto Nocera, Michael A. Perlin, Michael Perelshtein, Ruslan Shaydulin, Benjamin Villalonga, Markus Pflitsch, Marco Pistoia, Valerii Vinokur, Yuri Alexeev,
- Abstract summary: We review the diverse applications of tensor networks and show that they are an important instrument for quantum computing.<n>Specifically, we summarize the application of tensor networks in various domains of quantum computing, including simulation of quantum synthesis, quantum circuit, quantum error correction, and quantum machine learning.
- Score: 27.077215121982192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving field of quantum computing, tensor networks serve as an important tool due to their multifaceted utility. In this paper, we review the diverse applications of tensor networks and show that they are an important instrument for quantum computing. Specifically, we summarize the application of tensor networks in various domains of quantum computing, including simulation of quantum computation, quantum circuit synthesis, quantum error correction, and quantum machine learning. Finally, we provide an outlook on the opportunities and the challenges of the tensor-network techniques.
Related papers
- Tensor Network Techniques for Quantum Computation [41.94295877935867]
This book serves as an introductory yet thorough guide to tensor networks and their applications in quantum computation and quantum information.<n>In Part I, foundational topics are covered, including tensor structures and network representations like Matrix Product States (MPS) and Tree Networks (TTN)<n>Part II explores practical applications of tensor networks in simulating quantum dynamics.<n>A final chapter addresses the emerging role of "quantum magic" in tensor networks.
arXiv Detail & Related papers (2025-03-06T13:31:17Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Brief Introduction to Quantum Network Control [7.952919774651851]
Quantum networking is an emerging area with the potential to transform information processing and communications.
We present a brief introduction to quantum network control, an area dedicated to designing algorithms for distributing entanglement (i.e., entangled qubits)
We present a model for distributing entanglement in a multi-hop quantum network to enable applications such as quantum key distribution and distributed quantum computing.
arXiv Detail & Related papers (2024-07-29T11:21:45Z) - End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models [20.72342380227143]
This paper introduces an end-to-end Quantum Vision Transformer (QViT), which incorporates an innovative quantum residual connection technique.
Our thorough analysis of the QViT reveals a theoretically exponential complexity and empirically speedup, showcasing the model's efficiency and potential in quantum computing applications.
arXiv Detail & Related papers (2024-02-29T08:12:02Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks [2.962453125262748]
gradient-free approach for training multi-layered neural networks based upon quantum perceptrons.
We make use of measurable operators to define the states of the network in a manner consistent with a Markov process.
arXiv Detail & Related papers (2020-09-23T01:38:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.