Enhancing 3D Lane Detection and Topology Reasoning with 2D Lane Priors
- URL: http://arxiv.org/abs/2406.03105v1
- Date: Wed, 5 Jun 2024 09:48:56 GMT
- Title: Enhancing 3D Lane Detection and Topology Reasoning with 2D Lane Priors
- Authors: Han Li, Zehao Huang, Zitian Wang, Wenge Rong, Naiyan Wang, Si Liu,
- Abstract summary: 3D lane detection and topology reasoning are essential tasks in autonomous driving scenarios.
We propose Topo2D, a novel framework based on Transformer, leveraging 2D lane instances to initialize 3D queries and 3D positional embeddings.
Topo2D achieves 44.5% OLS on multi-view topology reasoning benchmark OpenLane-V2 and 62.6% F-Socre on single-view 3D lane detection benchmark OpenLane.
- Score: 40.92232275558338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D lane detection and topology reasoning are essential tasks in autonomous driving scenarios, requiring not only detecting the accurate 3D coordinates on lane lines, but also reasoning the relationship between lanes and traffic elements. Current vision-based methods, whether explicitly constructing BEV features or not, all establish the lane anchors/queries in 3D space while ignoring the 2D lane priors. In this study, we propose Topo2D, a novel framework based on Transformer, leveraging 2D lane instances to initialize 3D queries and 3D positional embeddings. Furthermore, we explicitly incorporate 2D lane features into the recognition of topology relationships among lane centerlines and between lane centerlines and traffic elements. Topo2D achieves 44.5% OLS on multi-view topology reasoning benchmark OpenLane-V2 and 62.6% F-Socre on single-view 3D lane detection benchmark OpenLane, exceeding the performance of existing state-of-the-art methods.
Related papers
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
Lane detection plays an important role in autonomous driving perception systems.
As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance.
This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
arXiv Detail & Related papers (2024-11-25T12:09:43Z) - 3D Lane Detection from Front or Surround-View using Joint-Modeling & Matching [27.588395086563978]
We propose a joint modeling approach that combines Bezier curves and methods.
We also introduce a novel 3D Spatial, representing an exploration of 3D surround-view lane detection research.
This innovative method establishes a new benchmark in front-view 3D lane detection on the Openlane dataset.
arXiv Detail & Related papers (2024-01-16T01:12:24Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
curve-based lane representation is a popular approach in many lane detection methods.
We propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression.
arXiv Detail & Related papers (2023-09-19T11:24:14Z) - LATR: 3D Lane Detection from Monocular Images with Transformer [42.34193673590758]
3D lane detection from monocular images is a fundamental yet challenging task in autonomous driving.
Recent advances rely on structural 3D surrogates built from front-view image features and camera parameters.
We present a novel LATR model, an end-to-end 3D lane detector that uses 3D-aware front-view features without transformed view representation.
arXiv Detail & Related papers (2023-08-08T21:08:42Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Reconstruct from Top View: A 3D Lane Detection Approach based on
Geometry Structure Prior [19.1954119672487]
We propose an advanced approach in targeting the problem of monocular 3D lane detection by leveraging geometry structure underneath process of 2D to 3D lane reconstruction.
We first analyze the geometry between the 3D lane and its 2D representation on the ground and propose to impose explicit supervision based on the structure prior.
Second, to reduce the structure loss in 2D lane representation, we directly extract top view lane information from front view images.
arXiv Detail & Related papers (2022-06-21T04:03:03Z) - ONCE-3DLanes: Building Monocular 3D Lane Detection [41.46466150783367]
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space.
By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations.
arXiv Detail & Related papers (2022-04-30T16:35:25Z) - PersFormer: 3D Lane Detection via Perspective Transformer and the
OpenLane Benchmark [109.03773439461615]
PersFormer is an end-to-end monocular 3D lane detector with a novel Transformer-based spatial feature transformation module.
We release one of the first large-scale real-world 3D lane datasets, called OpenLane, with high-quality annotation and scenario diversity.
arXiv Detail & Related papers (2022-03-21T16:12:53Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.