Higher Order Structures For Graph Explanations
- URL: http://arxiv.org/abs/2406.03253v5
- Date: Sun, 10 Nov 2024 14:52:12 GMT
- Title: Higher Order Structures For Graph Explanations
- Authors: Akshit Sinha, Sreeram Vennam, Charu Sharma, Ponnurangam Kumaraguru,
- Abstract summary: We present Framework For Higher-Order Representations In Graph Explanations (FORGE)
FORGE enables graph explainers to capture higher-order, multi-node interactions.
It improves average explanation accuracy by 1.9x and 2.25x, respectively.
- Score: 9.164945693135959
- License:
- Abstract: Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations of graph-structured data, demonstrating remarkable performance across various tasks. Recognising their importance, there has been extensive research focused on explaining GNN predictions, aiming to enhance their interpretability and trustworthiness. However, GNNs and their explainers face a notable challenge: graphs are primarily designed to model pair-wise relationships between nodes, which can make it tough to capture higher-order, multi-node interactions. This characteristic can pose difficulties for existing explainers in fully representing multi-node relationships. To address this gap, we present Framework For Higher-Order Representations In Graph Explanations (FORGE), a framework that enables graph explainers to capture such interactions by incorporating higher-order structures, resulting in more accurate and faithful explanations. Extensive evaluation shows that on average real-world datasets from the GraphXAI benchmark and synthetic datasets across various graph explainers, FORGE improves average explanation accuracy by 1.9x and 2.25x, respectively. We perform ablation studies to confirm the importance of higher-order relations in improving explanations, while our scalability analysis demonstrates FORGE's efficacy on large graphs.
Related papers
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
Graph Neural Networks (GNNs) have excelled in learning from graph-structured data.
Despite their successes, GNNs are limited by neglecting the context of relationships across graphs.
We introduce Relating-Up, a plug-and-play module that enhances GNNs by exploiting inter-graph relationships.
arXiv Detail & Related papers (2024-05-07T02:16:54Z) - Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation [35.42514739566419]
TopoAug is a novel graph augmentation method that builds a complex from the original graph by constructing virtual hyperedges directly from raw data.
We provide 23 novel real-world graph datasets across various domains including social media, biology, and e-commerce.
Our empirical study shows that TopoAug consistently and significantly outperforms GNN baselines and other graph augmentation methods.
arXiv Detail & Related papers (2024-02-20T14:18:43Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.