Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships
- URL: http://arxiv.org/abs/2405.03950v1
- Date: Tue, 7 May 2024 02:16:54 GMT
- Title: Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships
- Authors: Qi Zou, Na Yu, Daoliang Zhang, Wei Zhang, Rui Gao,
- Abstract summary: Graph Neural Networks (GNNs) have excelled in learning from graph-structured data.
Despite their successes, GNNs are limited by neglecting the context of relationships across graphs.
We introduce Relating-Up, a plug-and-play module that enhances GNNs by exploiting inter-graph relationships.
- Score: 17.978546172777342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have excelled in learning from graph-structured data, especially in understanding the relationships within a single graph, i.e., intra-graph relationships. Despite their successes, GNNs are limited by neglecting the context of relationships across graphs, i.e., inter-graph relationships. Recognizing the potential to extend this capability, we introduce Relating-Up, a plug-and-play module that enhances GNNs by exploiting inter-graph relationships. This module incorporates a relation-aware encoder and a feedback training strategy. The former enables GNNs to capture relationships across graphs, enriching relation-aware graph representation through collective context. The latter utilizes a feedback loop mechanism for the recursively refinement of these representations, leveraging insights from refining inter-graph dynamics to conduct feedback loop. The synergy between these two innovations results in a robust and versatile module. Relating-Up enhances the expressiveness of GNNs, enabling them to encapsulate a wider spectrum of graph relationships with greater precision. Our evaluations across 16 benchmark datasets demonstrate that integrating Relating-Up into GNN architectures substantially improves performance, positioning Relating-Up as a formidable choice for a broad spectrum of graph representation learning tasks.
Related papers
- Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
This study introduces a novel approach to sentence-level relation extraction (RE)
It integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs) to generate contextually enriched support documents.
Our experiments, conducted on the CrossRE dataset, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-30T20:48:34Z) - Higher Order Structures For Graph Explanations [9.164945693135959]
We present Framework For Higher-Order Representations In Graph Explanations (FORGE)
FORGE enables graph explainers to capture higher-order, multi-node interactions.
It improves average explanation accuracy by 1.9x and 2.25x, respectively.
arXiv Detail & Related papers (2024-06-05T13:31:30Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.