Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation
- URL: http://arxiv.org/abs/2402.13033v2
- Date: Mon, 12 Aug 2024 23:36:58 GMT
- Title: Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation
- Authors: Xiangyu Zhao, Zehui Li, Mingzhu Shen, Guy-Bart Stan, Pietro LiĆ², Yiren Zhao,
- Abstract summary: TopoAug is a novel graph augmentation method that builds a complex from the original graph by constructing virtual hyperedges directly from raw data.
We provide 23 novel real-world graph datasets across various domains including social media, biology, and e-commerce.
Our empirical study shows that TopoAug consistently and significantly outperforms GNN baselines and other graph augmentation methods.
- Score: 35.42514739566419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph augmentation methods play a crucial role in improving the performance and enhancing generalisation capabilities in Graph Neural Networks (GNNs). Existing graph augmentation methods mainly perturb the graph structures, and are usually limited to pairwise node relations. These methods cannot fully address the complexities of real-world large-scale networks, which often involve higher-order node relations beyond only being pairwise. Meanwhile, real-world graph datasets are predominantly modelled as simple graphs, due to the scarcity of data that can be used to form higher-order edges. Therefore, reconfiguring the higher-order edges as an integration into graph augmentation strategies lights up a promising research path to address the aforementioned issues. In this paper, we present Topological Augmentation (TopoAug), a novel graph augmentation method that builds a combinatorial complex from the original graph by constructing virtual hyperedges directly from the raw data. TopoAug then produces auxiliary node features by extracting information from the combinatorial complex, which are used for enhancing GNN performances on downstream tasks. We design three diverse virtual hyperedge construction strategies to accompany the construction of combinatorial complexes: (1) via graph statistics, (2) from multiple data perspectives, and (3) utilising multi-modality. Furthermore, to facilitate TopoAug evaluation, we provide 23 novel real-world graph datasets across various domains including social media, biology, and e-commerce. Our empirical study shows that TopoAug consistently and significantly outperforms GNN baselines and other graph augmentation methods, across a variety of application contexts, which clearly indicates that it can effectively incorporate higher-order node relations into the graph augmentation for real-world complex networks.
Related papers
- Synergistic Deep Graph Clustering Network [14.569867830074292]
We propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC)
In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation.
Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters.
arXiv Detail & Related papers (2024-06-22T09:40:34Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - Higher Order Structures For Graph Explanations [9.164945693135959]
We present Framework For Higher-Order Representations In Graph Explanations (FORGE)
FORGE enables graph explainers to capture higher-order, multi-node interactions.
It improves average explanation accuracy by 1.9x and 2.25x, respectively.
arXiv Detail & Related papers (2024-06-05T13:31:30Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs [27.24150788635981]
We introduce the concept of hybrid graphs and present the Hybrid Graph Benchmark (HGB)
HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce.
We provide an evaluation framework and a supporting framework to facilitate the training and evaluation of Graph Neural Networks (GNNs) on HGB.
arXiv Detail & Related papers (2023-06-08T11:15:34Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.