Deep Generative Models for Proton Zero Degree Calorimeter Simulations in ALICE, CERN
- URL: http://arxiv.org/abs/2406.03263v1
- Date: Wed, 5 Jun 2024 13:41:09 GMT
- Title: Deep Generative Models for Proton Zero Degree Calorimeter Simulations in ALICE, CERN
- Authors: Patryk Będkowski, Jan Dubiński, Kamil Deja, Przemysław Rokita,
- Abstract summary: We present an innovative deep learning simulation approach tailored for the proton Zero Degree Calorimeter in the ALICE experiment.
Our method offers a significant speedup when comparing to the traditional Monte-Carlo based approaches.
- Score: 3.2686289567336235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating detector responses is a crucial part of understanding the inner-workings of particle collisions in the Large Hadron Collider at CERN. The current reliance on statistical Monte-Carlo simulations strains CERN's computational grid, underscoring the urgency for more efficient alternatives. Addressing these challenges, recent proposals advocate for generative machine learning methods. In this study, we present an innovative deep learning simulation approach tailored for the proton Zero Degree Calorimeter in the ALICE experiment. Leveraging a Generative Adversarial Network model with Selective Diversity Increase loss, we directly simulate calorimeter responses. To enhance its capabilities in modeling a broad range of calorimeter response intensities, we expand the SDI-GAN architecture with additional regularization. Moreover, to improve the spatial fidelity of the generated data, we introduce an auxiliary regressor network. Our method offers a significant speedup when comparing to the traditional Monte-Carlo based approaches.
Related papers
- Applying generative neural networks for fast simulations of the ALICE (CERN) experiment [0.0]
This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector at CERN.
Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding.
The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics.
arXiv Detail & Related papers (2024-07-10T17:08:59Z) - Generative Diffusion Models for Fast Simulations of Particle Collisions at CERN [3.2686289567336235]
In High Energy Physics simulations play a crucial role in unraveling the complexities of particle collision experiments within CERN's Large Hadron Collider.
Recent advancements highlight the efficacy of diffusion models as state-of-the-art generative machine learning methods.
We present the first simulation for Zero Degree Calorimeter (ZDC) at the ALICE experiment based on diffusion models, achieving the highest fidelity compared to existing baselines.
arXiv Detail & Related papers (2024-06-05T13:11:53Z) - Particle physics DL-simulation with control over generated data properties [3.2686289567336235]
The research of innovative methods aimed at reducing costs and shortening the time needed for simulation has been sparked by the development of collision simulations at CERN.
Deep learning generative methods including VAE, GANs and diffusion models have been used for this purpose.
This work aims to mitigate this issue, by providing an alternative solution to currently employed algorithms by introducing the mechanism of control over the generated data properties.
arXiv Detail & Related papers (2024-05-22T22:39:29Z) - Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation [14.42579802774594]
We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE)
Our model adopts a two-stage generation strategy: compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens.
Remarkably, our model achieves the generation of calorimeter showers within milliseconds.
arXiv Detail & Related papers (2024-05-10T17:12:48Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations.
The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods.
We propose an alternative approach to the problem that leverages machine learning.
arXiv Detail & Related papers (2023-06-23T16:45:46Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.