Comparative Benchmarking of Failure Detection Methods in Medical Image Segmentation: Unveiling the Role of Confidence Aggregation
- URL: http://arxiv.org/abs/2406.03323v2
- Date: Mon, 24 Jun 2024 14:46:49 GMT
- Title: Comparative Benchmarking of Failure Detection Methods in Medical Image Segmentation: Unveiling the Role of Confidence Aggregation
- Authors: Maximilian Zenk, David Zimmerer, Fabian Isensee, Jeremias Traub, Tobias Norajitra, Paul F. Jäger, Klaus Maier-Hein,
- Abstract summary: This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation.
We identify the strengths and limitations of current failure detection metrics, advocating for the risk-coverage analysis as a holistic evaluation approach.
- Score: 0.723226140060364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is an essential component of medical image analysis research, with recent deep learning algorithms offering out-of-the-box applicability across diverse datasets. Despite these advancements, segmentation failures remain a significant concern for real-world clinical applications, necessitating reliable detection mechanisms. This paper introduces a comprehensive benchmarking framework aimed at evaluating failure detection methodologies within medical image segmentation. Through our analysis, we identify the strengths and limitations of current failure detection metrics, advocating for the risk-coverage analysis as a holistic evaluation approach. Utilizing a collective dataset comprising five public 3D medical image collections, we assess the efficacy of various failure detection strategies under realistic test-time distribution shifts. Our findings highlight the importance of pixel confidence aggregation and we observe superior performance of the pairwise Dice score (Roy et al., 2019) between ensemble predictions, positioning it as a simple and robust baseline for failure detection in medical image segmentation. To promote ongoing research, we make the benchmarking framework available to the community.
Related papers
- Assessing Uncertainty Estimation Methods for 3D Image Segmentation under
Distribution Shifts [0.36832029288386137]
This paper explores the feasibility of using cutting-edge Bayesian and non-Bayesian methods to detect distributionally shifted samples.
We compare three distinct uncertainty estimation methods, each designed to capture either unimodal or multimodal aspects in the posterior distribution.
Our findings demonstrate that methods capable of addressing multimodal characteristics in the posterior distribution, offer more dependable uncertainty estimates.
arXiv Detail & Related papers (2024-02-10T12:23:08Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
We propose CRISP a ContRastive Image for uncertainty Prediction method.
At its core, CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations.
We use this joint latent space to compare predictions to thousands of latent vectors and provide anatomically consistent uncertainty maps.
arXiv Detail & Related papers (2022-06-15T16:56:58Z) - Failure Detection in Medical Image Classification: A Reality Check and
Benchmarking Testbed [23.25084022554028]
Failure detection in automated image classification is a critical safeguard for clinical deployment.
Despite its paramount importance, there is insufficient evidence about the ability of state-of-the-art confidence scoring methods to detect test-time failures.
This paper provides a reality check, establishing the performance of in-domain misclassification detection methods.
arXiv Detail & Related papers (2022-05-27T16:50:48Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA)
The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL.
Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
arXiv Detail & Related papers (2021-11-15T12:38:56Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.