Assessing Uncertainty Estimation Methods for 3D Image Segmentation under
Distribution Shifts
- URL: http://arxiv.org/abs/2402.06937v1
- Date: Sat, 10 Feb 2024 12:23:08 GMT
- Title: Assessing Uncertainty Estimation Methods for 3D Image Segmentation under
Distribution Shifts
- Authors: Masoumeh Javanbakhat, Md Tasnimul Hasan, Cristoph Lippert
- Abstract summary: This paper explores the feasibility of using cutting-edge Bayesian and non-Bayesian methods to detect distributionally shifted samples.
We compare three distinct uncertainty estimation methods, each designed to capture either unimodal or multimodal aspects in the posterior distribution.
Our findings demonstrate that methods capable of addressing multimodal characteristics in the posterior distribution, offer more dependable uncertainty estimates.
- Score: 0.36832029288386137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning has witnessed extensive adoption across
various sectors, yet its application in medical image-based disease detection
and diagnosis remains challenging due to distribution shifts in real-world
data. In practical settings, deployed models encounter samples that differ
significantly from the training dataset, especially in the health domain,
leading to potential performance issues. This limitation hinders the
expressiveness and reliability of deep learning models in health applications.
Thus, it becomes crucial to identify methods capable of producing reliable
uncertainty estimation in the context of distribution shifts in the health
sector. In this paper, we explore the feasibility of using cutting-edge
Bayesian and non-Bayesian methods to detect distributionally shifted samples,
aiming to achieve reliable and trustworthy diagnostic predictions in
segmentation task. Specifically, we compare three distinct uncertainty
estimation methods, each designed to capture either unimodal or multimodal
aspects in the posterior distribution. Our findings demonstrate that methods
capable of addressing multimodal characteristics in the posterior distribution,
offer more dependable uncertainty estimates. This research contributes to
enhancing the utility of deep learning in healthcare, making diagnostic
predictions more robust and trustworthy.
Related papers
- Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts [2.309018557701645]
This paper evaluates whether predictive uncertainty estimation adds robustness to deep learning-based diagnostic decision-making systems.
We first investigate three popular methods for improving predictive uncertainty: Monte Carlo dropout, deep ensemble, and few-shot learning on lung adenocarcinoma classification as a primary disease in whole slide images.
arXiv Detail & Related papers (2024-08-15T21:49:43Z) - Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
We propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-modality information.
Experimental results on both public and internal datasets demonstrate that our model excels in robustness.
arXiv Detail & Related papers (2024-05-28T13:27:30Z) - Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification [3.7305040207339286]
We develop Conformal Prediction, Monte Carlo Dropout, and Evidential Deep Learning approaches to assess uncertainty quantification in deep neural networks.
Results: The experimental results demonstrate a significant enhancement in uncertainty quantification with the utilization of the Conformal Prediction method.
Our conclusion highlights a robust and consistent performance of conformal prediction across diverse testing conditions.
arXiv Detail & Related papers (2023-12-12T17:37:16Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Ensemble deep learning has been shown to achieve high predictive accuracy and uncertainty estimation.
perturbations in the input images at test time can still lead to significant performance degradation.
LaDiNE is a novel and robust probabilistic method that is capable of inferring informative and invariant latent variables from the input images.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
quantifying uncertainty associated with model predictions is crucial in critical clinical applications.
Deep learning based methods for automatic organ segmentation have shown promise in aiding diagnosis and treatment planning.
It is unclear which method is preferred in the medical image analysis setting.
arXiv Detail & Related papers (2023-08-15T00:09:33Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
We introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoSt.
Our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results.
Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods.
arXiv Detail & Related papers (2023-03-17T06:18:16Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
We propose a benchmark of 8 image-based regression datasets with different types of challenging distribution shifts.
We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets.
arXiv Detail & Related papers (2023-02-07T18:54:39Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.