Noisy Data Visualization using Functional Data Analysis
- URL: http://arxiv.org/abs/2406.03396v1
- Date: Wed, 5 Jun 2024 15:53:25 GMT
- Title: Noisy Data Visualization using Functional Data Analysis
- Authors: Haozhe Chen, Andres Felipe Duque Correa, Guy Wolf, Kevin R. Moon,
- Abstract summary: We propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes.
We experimentally demonstrate that the resulting method outperforms a variant of EIG designed for visualization.
We then use our method to visualize EEG brain measurements of sleep activity.
- Score: 14.255424476694946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data visualization via dimensionality reduction is an important tool in exploratory data analysis. However, when the data are noisy, many existing methods fail to capture the underlying structure of the data. The method called Empirical Intrinsic Geometry (EIG) was previously proposed for performing dimensionality reduction on high dimensional dynamical processes while theoretically eliminating all noise. However, implementing EIG in practice requires the construction of high-dimensional histograms, which suffer from the curse of dimensionality. Here we propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes that adapts the EIG framework while using approaches from functional data analysis to mitigate the curse of dimensionality. We experimentally demonstrate that the resulting method outperforms a variant of EIG designed for visualization in terms of capturing the true structure, hyperparameter robustness, and computational speed. We then use our method to visualize EEG brain measurements of sleep activity.
Related papers
- GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
In this work, we aim to introduce the first highly non-supervised dimensionality reduction performance metric.
To test its feasibility, this metric has been used to evaluate the performance of the most commonly used dimension reduction algorithms.
A new parameterized problem instance generator has been constructed in the form of a function generator.
arXiv Detail & Related papers (2023-03-17T11:59:33Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters.
We demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
arXiv Detail & Related papers (2022-10-04T12:09:57Z) - Dimensionality Reduction using Elastic Measures [0.6445605125467572]
We present a method for incorporating elastic metrics into the t-distributed Neighbor Embedding (t-SNE) and Uniform Approximation and Projection (UMAP)
We demonstrate improved performance on three benchmark data sets on shape identification and classification tasks.
arXiv Detail & Related papers (2022-09-07T21:09:38Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
We propose LaptSNE, a new graph-based dimensionality reduction method based on t-SNE.
Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding.
We show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective.
arXiv Detail & Related papers (2022-07-25T14:10:24Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Scalable semi-supervised dimensionality reduction with GPU-accelerated
EmbedSOM [0.0]
BlosSOM is a high-performance semi-supervised dimensionality reduction software for interactive user-steerable visualization of high-dimensional datasets.
We show the application of BlosSOM on realistic datasets, where it helps to produce high-quality visualizations that incorporate user-specified layout and focus on certain features.
arXiv Detail & Related papers (2022-01-03T15:06:22Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z) - NCVis: Noise Contrastive Approach for Scalable Visualization [79.44177623781043]
NCVis is a high-performance dimensionality reduction method built on a sound statistical basis of noise contrastive estimation.
We show that NCVis outperforms state-of-the-art techniques in terms of speed while preserving the representation quality of other methods.
arXiv Detail & Related papers (2020-01-30T15:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.