論文の概要: CattleFace-RGBT: RGB-T Cattle Facial Landmark Benchmark
- arxiv url: http://arxiv.org/abs/2406.03431v1
- Date: Wed, 5 Jun 2024 16:29:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:22:00.333573
- Title: CattleFace-RGBT: RGB-T Cattle Facial Landmark Benchmark
- Title(参考訳): CattleFace-RGBT: RGB-T Cattle Facial Landmarkベンチマーク
- Authors: Ethan Coffman, Reagan Clark, Nhat-Tan Bui, Trong Thang Pham, Beth Kegley, Jeremy G. Powell, Jiangchao Zhao, Ngan Le,
- Abstract要約: CattleFace-RGBTは、合計4,600枚からなる2,300枚のRGB-T画像からなるRGB-T Cattle Facial Landmarkデータセットである。
AIを熱画像に適用することは、直接熱訓練と実現不可能なRGB熱的アライメントによる最適以下の結果によって困難である。
我々は、RGBで訓練されたモデルを熱画像に転送し、AIアシストアノテーションツールを使用してそれらを洗練する。
- 参考スコア(独自算出の注目度): 4.463254896517738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address this challenge, we introduce CattleFace-RGBT, a RGB-T Cattle Facial Landmark dataset consisting of 2,300 RGB-T image pairs, a total of 4,600 images. Creating a landmark dataset is time-consuming, but AI-assisted annotation can help. However, applying AI to thermal images is challenging due to suboptimal results from direct thermal training and infeasible RGB-thermal alignment due to different camera views. Therefore, we opt to transfer models trained on RGB to thermal images and refine them using our AI-assisted annotation tool following a semi-automatic annotation approach. Accurately localizing facial key points on both RGB and thermal images enables us to not only discern the cattle's respiratory signs but also measure temperatures to assess the animal's thermal state. To the best of our knowledge, this is the first dataset for the cattle facial landmark on RGB-T images. We conduct benchmarking of the CattleFace-RGBT dataset across various backbone architectures, with the objective of establishing baselines for future research, analysis, and comparison. The dataset and models are at https://github.com/UARK-AICV/CattleFace-RGBT-benchmark
- Abstract(参考訳): この課題に対処するために,2300枚のRGB-T画像ペアからなるRGB-TキャッスルファシアルランドマークデータセットであるCattleFace-RGBTを紹介した。
ランドマークデータセットの作成には時間がかかりますが、AI支援アノテーションが役立ちます。
しかし、直接熱訓練と異なるカメラビューによる非実用的RGB熱的アライメントによる最適結果のため、熱画像にAIを適用することは困難である。
したがって、RGBでトレーニングされたモデルを熱画像に転送し、半自動アノテーションアプローチに従ってAI支援アノテーションツールを使用してそれらを洗練する。
RGBと熱画像の両方に正確な顔のキーポイントを正確に配置することで、牛の呼吸の兆候を識別するだけでなく、温度を測定して動物の熱状態を評価することができます。
我々の知る限りでは、これはRGB-T画像上の牛の顔のランドマークのための最初のデータセットである。
本研究では,様々なバックボーンアーキテクチャを対象としたCattleFace-RGBTデータセットのベンチマークを行い,今後の研究,分析,比較のためのベースラインを確立することを目的とする。
データセットとモデルはhttps://github.com/UARK-AICV/CattleFace-RGBT-benchmarkにある。
関連論文リスト
- T-FAKE: Synthesizing Thermal Images for Facial Landmarking [8.20594611891252]
スパースと密集したランドマークを持つ新しい大規模合成熱データセットであるT-FAKEデータセットを紹介する。
我々のモデルは、スパース70点のランドマークと密度478点のランドマークアノテーションの両方で優れた性能を示している。
論文 参考訳(メタデータ) (2024-08-27T15:07:58Z) - Alignment-Free RGBT Salient Object Detection: Semantics-guided Asymmetric Correlation Network and A Unified Benchmark [15.435695491233982]
RGB と Thermal (RGBT) Salient Object Detection (SOD) は高品質な塩分濃度予測を実現することを目的としている。
既存の手法は、労働集約的な手動でアライメントされたイメージペア向けに調整されている。
手動によるアライメントを伴わないRGBT SODと熱画像のペアに対して,RGBT SODに対処する最初の試みを行う。
論文 参考訳(メタデータ) (2024-06-03T01:01:58Z) - Caltech Aerial RGB-Thermal Dataset in the Wild [14.699908177967181]
本稿では,自然環境下での航空ロボットのためのRGB熱水モデルについて紹介する。
私たちのデータセットは、川、湖、海岸線、砂漠、森林など、米国中のさまざまな地形を捉えています。
自然設定でよく見られる10のクラスに対してセマンティックセグメンテーションアノテーションを提供する。
論文 参考訳(メタデータ) (2024-03-13T23:31:04Z) - Visible to Thermal image Translation for improving visual task in low
light conditions [0.0]
Parrot Anafi Thermalのドローンを使って、2つの場所から画像を収集した。
我々は2ストリームネットワークを作成し、前処理、拡張、画像データを作成し、ジェネレータと識別器モデルをゼロから訓練した。
その結果, RGB トレーニングデータを GAN を用いて熱データに変換することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-31T05:18:53Z) - What Happened 3 Seconds Ago? Inferring the Past with Thermal Imaging [22.923237551192834]
人体動作解析のための最初のRGBサーマルデータセットを収集した。
我々は過去の人間のポーズ推定を正確にするための3段階ニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2023-04-26T16:23:10Z) - Precise Facial Landmark Detection by Reference Heatmap Transformer [52.417964103227696]
より正確に顔のランドマークを検出するための参照ヒートマップ変換器(RHT)を提案する。
評価実験の結果,提案手法は文献における最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-14T12:26:48Z) - Blind Face Restoration: Benchmark Datasets and a Baseline Model [63.053331687284064]
Blind Face Restoration (BFR) は、対応する低品質 (LQ) 入力から高品質 (HQ) の顔画像を構築することを目的としている。
EDFace-Celeb-1M (BFR128) と EDFace-Celeb-150K (BFR512) と呼ばれる2つのブラインドフェイス復元ベンチマークデータセットを最初に合成する。
最先端の手法は、ブラー、ノイズ、低解像度、JPEG圧縮アーティファクト、それらの組み合わせ(完全な劣化)の5つの設定でベンチマークされる。
論文 参考訳(メタデータ) (2022-06-08T06:34:24Z) - GradViT: Gradient Inversion of Vision Transformers [83.54779732309653]
我々は,視力変換器(ViT)の勾配に基づく逆攻撃に対する脆弱性を実証する。
自然に見える画像にランダムノイズを最適化するGradViTという手法を提案する。
元の(隠された)データに対する前例のない高い忠実さと近接性を観察する。
論文 参考訳(メタデータ) (2022-03-22T17:06:07Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
RGBD画像における接地参照表現は新たな分野である。
本稿では,参照する物体が閉塞により部分的にスキャンされる場合が多い単視点rgbd画像における3次元視覚グランド化の新たな課題を提案する。
提案手法はまず,RGBD画像内の関連領域をローカライズするヒートマップを生成するために,下層の言語と視覚的特徴を融合させる。
次に、ヒートマップに基づく適応的特徴学習を行い、他のビジオ言語融合とオブジェクトレベルのマッチングを行い、最後に参照したオブジェクトを接地する。
論文 参考訳(メタデータ) (2021-03-14T11:18:50Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
DEVCOM Army Research Laboratory Visible-Thermal Faceデータセット(ARL-VTF)を発表します。
395人の被験者から50万枚以上の画像が得られたARL-VTFデータセットは、これまでで最大の可視画像とサーマルフェイス画像の収集データだ。
本論文では,ALL-VTFデータセットを用いたサーマルフェースランドマーク検出とサーマル・トゥ・ヴィジブルフェース検証のベンチマーク結果と分析について述べる。
論文 参考訳(メタデータ) (2021-01-07T17:17:12Z) - Multi-Scale Thermal to Visible Face Verification via Attribute Guided
Synthesis [55.29770222566124]
可視画像から抽出した属性を用いて、熱画像から属性保存された可視画像を合成し、クロスモーダルマッチングを行う。
抽出した属性によって導かれる熱画像から可視像を合成するために, 新規なマルチスケールジェネレータを提案する。
事前訓練されたVGG-Faceネットワークを利用して、合成画像と入力可視画像から特徴を抽出し、検証を行う。
論文 参考訳(メタデータ) (2020-04-20T01:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。