論文の概要: Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning
- arxiv url: http://arxiv.org/abs/2406.03519v3
- Date: Tue, 29 Oct 2024 22:46:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:06.066635
- Title: Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning
- Title(参考訳): 不均一な個人差分学習のための雑音認識アルゴリズム
- Authors: Saber Malekmohammadi, Yaoliang Yu, Yang Cao,
- Abstract要約: 本稿では,クライアントモデル更新における真のノイズレベルを効率的に推定するRobust-HDPを提案する。
ユーティリティと収束速度を改善し、不正なプライバシパラメータをサーバに送信する可能性のあるクライアントに対して安全である。
- 参考スコア(独自算出の注目度): 21.27813247914949
- License:
- Abstract: High utility and rigorous data privacy are of the main goals of a federated learning (FL) system, which learns a model from the data distributed among some clients. The latter has been tried to achieve by using differential privacy in FL (DPFL). There is often heterogeneity in clients privacy requirements, and existing DPFL works either assume uniform privacy requirements for clients or are not applicable when server is not fully trusted (our setting). Furthermore, there is often heterogeneity in batch and/or dataset size of clients, which as shown, results in extra variation in the DP noise level across clients model updates. With these sources of heterogeneity, straightforward aggregation strategies, e.g., assigning clients aggregation weights proportional to their privacy parameters will lead to lower utility. We propose Robust-HDP, which efficiently estimates the true noise level in clients model updates and reduces the noise-level in the aggregated model updates considerably. Robust-HDP improves utility and convergence speed, while being safe to the clients that may maliciously send falsified privacy parameter to server. Extensive experimental results on multiple datasets and our theoretical analysis confirm the effectiveness of Robust-HDP. Our code can be found here.
- Abstract(参考訳): 高いユーティリティと厳密なデータプライバシは、いくつかのクライアント間で分散したデータからモデルを学ぶ、フェデレートラーニング(FL)システムの主要な目標のひとつです。
後者はFL(DPFL)で差分プライバシーを利用することで実現されている。
クライアントのプライバシ要件には不均一性があることが多く、既存のDPFLは、クライアントの統一的なプライバシ要件を前提とするか、あるいはサーバが完全に信頼されていない場合(設定)には適用できない。
さらに、クライアントのバッチサイズやデータセットサイズには不均一性がしばしば存在し、示すように、クライアントモデルの更新間でDPノイズレベルが余分に変化する。
このような異種性の源では、クライアントのアグリゲーションの重み付けをプライバシパラメータに比例して割り当てるなど、直接的なアグリゲーション戦略によって、実用性が低下する。
本稿では,クライアントモデル更新における真のノイズレベルを効率的に推定し,集約モデル更新におけるノイズレベルを大幅に低減するRobust-HDPを提案する。
Robust-HDPはユーティリティと収束速度を改善し、不正なプライバシパラメータをサーバに送信する可能性のあるクライアントに対して安全である。
複数のデータセットに対する大規模な実験結果と理論的解析により,Robust-HDPの有効性が確認された。
私たちのコードはここにある。
関連論文リスト
- The Power of Bias: Optimizing Client Selection in Federated Learning with Heterogeneous Differential Privacy [38.55420329607416]
データ品質とDPノイズの影響は、クライアントを選択する際に考慮する必要がある。
実データセットを凸損失関数と非凸損失関数の両方で実験する。
論文 参考訳(メタデータ) (2024-08-16T10:19:27Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Adaptive Differential Privacy in Federated Learning: A Priority-Based
Approach [0.0]
フェデレートラーニング(FL)は、ローカルデータセットに直接アクセスせずにグローバルモデルを開発する。
DPはパラメータに一定のノイズを加えることで、プライバシーを保証するフレームワークを提供する。
本稿では,特徴量の相対的重要度に基づいて入射雑音の値を決定するFLの適応雑音付加法を提案する。
論文 参考訳(メタデータ) (2024-01-04T03:01:15Z) - DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum [11.68347496182345]
フェデレートラーニング(FL)は、複数の参加するクライアントが機械学習モデルを協調的にトレーニングすることを可能にする。
既存のFLプロトコルは、データのプライバシやモデルの堅牢性を損なうような攻撃に対して脆弱である。
我々は,クロスサイロFLにおける差分プライバシ(DP)とビザンチンの堅牢性を同時に達成することに注力する。
論文 参考訳(メタデータ) (2023-06-22T00:11:53Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated Learning(FL)は、複数のクライアントがプライベートデータを公開せずにモデルをトレーニングする分散機械学習フレームワークである。
FLアルゴリズムは、共有前に各クライアントのモデル更新にノイズを導入する差分プライバシーメカニズムを頻繁に採用する。
ローカルステップの数と通信ラウンドの間に最適なバランスがあることを示し、プライバシー予算内での収束性能を最大化する。
論文 参考訳(メタデータ) (2023-04-11T10:42:11Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Federated Noisy Client Learning [105.00756772827066]
フェデレートラーニング(FL)は、複数のローカルクライアントに依存する共有グローバルモデルを協調的に集約する。
標準FLメソッドは、集約されたモデル全体のパフォーマンスを損なううるノイズの多いクライアントの問題を無視します。
本稿では,Fed-NCL (Federated Noisy Client Learning) を提案する。
論文 参考訳(メタデータ) (2021-06-24T11:09:17Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。