論文の概要: The Power of Bias: Optimizing Client Selection in Federated Learning with Heterogeneous Differential Privacy
- arxiv url: http://arxiv.org/abs/2408.08642v1
- Date: Fri, 16 Aug 2024 10:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:57:38.994270
- Title: The Power of Bias: Optimizing Client Selection in Federated Learning with Heterogeneous Differential Privacy
- Title(参考訳): バイアスの力:不均一な差分プライバシーによるフェデレーション学習におけるクライアント選択の最適化
- Authors: Jiating Ma, Yipeng Zhou, Qi Li, Quan Z. Sheng, Laizhong Cui, Jiangchuan Liu,
- Abstract要約: データ品質とDPノイズの影響は、クライアントを選択する際に考慮する必要がある。
実データセットを凸損失関数と非凸損失関数の両方で実験する。
- 参考スコア(独自算出の注目度): 38.55420329607416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To preserve the data privacy, the federated learning (FL) paradigm emerges in which clients only expose model gradients rather than original data for conducting model training. To enhance the protection of model gradients in FL, differentially private federated learning (DPFL) is proposed which incorporates differentially private (DP) noises to obfuscate gradients before they are exposed. Yet, an essential but largely overlooked problem in DPFL is the heterogeneity of clients' privacy requirement, which can vary significantly between clients and extremely complicates the client selection problem in DPFL. In other words, both the data quality and the influence of DP noises should be taken into account when selecting clients. To address this problem, we conduct convergence analysis of DPFL under heterogeneous privacy, a generic client selection strategy, popular DP mechanisms and convex loss. Based on convergence analysis, we formulate the client selection problem to minimize the value of loss function in DPFL with heterogeneous privacy, which is a convex optimization problem and can be solved efficiently. Accordingly, we propose the DPFL-BCS (biased client selection) algorithm. The extensive experiment results with real datasets under both convex and non-convex loss functions indicate that DPFL-BCS can remarkably improve model utility compared with the SOTA baselines.
- Abstract(参考訳): データプライバシを維持するために、フェデレートラーニング(FL)パラダイムは、クライアントがモデルトレーニングを行うためのオリジナルのデータではなく、モデル勾配のみを公開する、というものです。
FLにおけるモデル勾配の保護を強化するために,差分プライベート・フェデレート・ラーニング(DPFL)を提案する。
しかし,DPFLでは,クライアントのプライバシ要件が不均一であることや,DPFLのクライアント選択問題を極めて複雑化する,といった問題が発生している。
言い換えれば、クライアントを選択する際には、データ品質とDPノイズの影響の両方を考慮する必要がある。
この問題を解決するために,不均一なプライバシ,汎用クライアント選択戦略,一般的なDP機構,凸損失を考慮したDPFLの収束解析を行う。
収束解析に基づいてクライアント選択問題を定式化し、凸最適化問題である不均一なプライバシーを持つDPFLにおける損失関数の値を最小限に抑える。
そこで本研究では,DPFL-BCSアルゴリズムを提案する。
凸損失関数と非凸損失関数の両方の下での実際のデータセットによる広範な実験結果から、DPFL-BCSはSOTAベースラインと比較してモデルの有用性を著しく改善できることが示された。
関連論文リスト
- DP$^2$-FedSAM: Enhancing Differentially Private Federated Learning Through Personalized Sharpness-Aware Minimization [8.022417295372492]
Federated Learning(FL)は、複数のクライアントが生データを共有せずに、協調的にモデルをトレーニングできる分散機械学習アプローチである。
FLで共有されるモデル更新によって、センシティブな情報が推測されるのを防ぐために、差分プライベート・フェデレーション・ラーニング(DPFL)が提案されている。
DPFLは、共有モデル更新にランダムノイズを加えて、FLの形式的かつ厳格なプライバシ保護を保証する。
DP$2$-FedSAM: シャープネスを意識した個人化フェデレート学習を提案する。
論文 参考訳(メタデータ) (2024-09-20T16:49:01Z) - Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning [21.27813247914949]
本稿では,クライアントモデル更新における真のノイズレベルを効率的に推定するRobust-HDPを提案する。
ユーティリティと収束速度を改善し、不正なプライバシパラメータをサーバに送信する可能性のあるクライアントに対して安全である。
論文 参考訳(メタデータ) (2024-06-05T17:41:42Z) - Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering [4.768272342753616]
Federated Learning(FL)は、データをローカライズする分散機械学習(ML)アプローチである。
最近の研究は、クラスタリングによるバニラFLの性能公平性に対処しようと試みているが、この手法は依然として敏感であり、エラーを起こしやすい。
本稿では,クライアントのクラスタを高度に均一な設定で効果的に識別する新しいクラスタ化DPFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:03:31Z) - Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian
Approach [42.59649764999974]
フェデレートラーニングは、複数のクライアントがローカルに格納するプライベートおよび分散データから、共有モデルを推論することを目的としている。
PAC-Bayesian フレームワーク内で確率モデルを学習するための PFL アルゴリズム PAC-PFL を提案する。
提案アルゴリズムは,共有されたハイパーポインターを協調的に学習し,各クライアントの後部推論をステップパーソナライズとみなす。
論文 参考訳(メタデータ) (2024-01-16T13:30:37Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Balancing Privacy Protection and Interpretability in Federated Learning [8.759803233734624]
フェデレートラーニング(FL)は、ローカルクライアントから中央サーバにモデルパラメータを共有することで、グローバルモデルを分散的にトレーニングすることを目的としている。
近年の研究では、FLは情報漏洩に悩まされており、敵はローカルクライアントから共有パラメータを解析してトレーニングデータを回復しようとする。
本稿では,FLにおけるクライアントモデルの勾配に雑音を選択的に追加する,単純かつ効果的な適応型微分プライバシー(ADP)機構を提案する。
論文 参考訳(メタデータ) (2023-02-16T02:58:22Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
我々は,フェデレーション学習のための新しいプライバシ保護手法であるFedLAP-DPを提案する。
公式なプライバシー分析は、FedLAP-DPが典型的な勾配共有方式と同じプライバシーコストを発生させることを示している。
提案手法は, 通常の勾配共有法に比べて高速な収束速度を示す。
論文 参考訳(メタデータ) (2023-02-02T12:56:46Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。