Reconciling Heterogeneous Effects in Causal Inference
- URL: http://arxiv.org/abs/2406.03575v1
- Date: Wed, 5 Jun 2024 18:43:46 GMT
- Title: Reconciling Heterogeneous Effects in Causal Inference
- Authors: Audrey Chang, Emily Diana, Alexander Williams Tolbert,
- Abstract summary: We apply the Reconcile algorithm for model multiplicity in machine learning to reconcile heterogeneous effects in causal inference.
Our results have tangible implications for ensuring fair outcomes in high-stakes such as healthcare, insurance, and housing.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this position and problem pitch paper, we offer a solution to the reference class problem in causal inference. We apply the Reconcile algorithm for model multiplicity in machine learning to reconcile heterogeneous effects in causal inference. Discrepancy between conditional average treatment effect (CATE) estimators of heterogeneous effects poses the reference class problem, where estimates for individual predictions differ by choice of reference class. By adopting the individual to group framework for interpreting probability, we can recognize that the reference class problem -- which appears across fields such as philosophy of science and causal inference -- is equivalent to the model multiplicity problem in computer science. We then apply the Reconcile Algorithm to reconcile differences in estimates of individual probability among CATE estimators. Because the reference class problem manifests in contexts of individual probability prediction using group-based evidence, our results have tangible implications for ensuring fair outcomes in high-stakes such as healthcare, insurance, and housing, especially for marginalized communities. By highlighting the importance of mitigating disparities in predictive modeling, our work invites further exploration into interdisciplinary strategies that combine technical rigor with a keen awareness of social implications. Ultimately, our findings advocate for a holistic approach to algorithmic fairness, underscoring the critical role of thoughtful, well-rounded solutions in achieving the broader goals of equity and access.
Related papers
- Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the challenges posed by confounding factors in observational studies.
Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum loss-based estimation theory.
We demonstrate the applicability of these estimators to analyze the effect of early stage academic performance on future yearly income.
arXiv Detail & Related papers (2023-12-15T22:04:53Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Model-Based Approach for Measuring the Fairness in ASR [11.076999352942954]
We introduce mixed-effects Poisson regression to better measure and interpret any WER difference among subgroups of interest.
We demonstrate the validity of proposed model-based approach on both synthetic and real-world speech data.
arXiv Detail & Related papers (2021-09-19T05:24:01Z) - Explaining Algorithmic Fairness Through Fairness-Aware Causal Path
Decomposition [37.823248189626014]
We propose to study the problem of identification of the source of model disparities.
Unlike existing interpretation methods which typically learn feature importance, we consider the causal relationships among feature variables.
Our framework is also model agnostic and applicable to a variety of quantitative disparity measures.
arXiv Detail & Related papers (2021-08-11T17:23:47Z) - Impact Remediation: Optimal Interventions to Reduce Inequality [10.806517393212491]
We develop a novel algorithmic framework for tackling pre-existing real-world disparities.
The purpose of our framework is to measure real-world disparities and discover optimal intervention policies.
In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective.
arXiv Detail & Related papers (2021-07-01T16:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.