Federated Causal Inference in Healthcare: Methods, Challenges, and Applications
- URL: http://arxiv.org/abs/2505.02238v1
- Date: Sun, 04 May 2025 20:30:11 GMT
- Title: Federated Causal Inference in Healthcare: Methods, Challenges, and Applications
- Authors: Haoyang Li, Jie Xu, Kyra Gan, Fei Wang, Chengxi Zang,
- Abstract summary: Federated causal inference enables multi-site treatment effect estimation without sharing individual-level data.<n>We present a comprehensive review and theoretical analysis of federated causal effect estimation across both binary/continuous and time-to-event outcomes.<n>We conclude by outlining opportunities, challenges, and future directions for scalable, fair, and trustworthy federated causal inference in distributed healthcare systems.
- Score: 21.843379449376172
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated causal inference enables multi-site treatment effect estimation without sharing individual-level data, offering a privacy-preserving solution for real-world evidence generation. However, data heterogeneity across sites, manifested in differences in covariate, treatment, and outcome, poses significant challenges for unbiased and efficient estimation. In this paper, we present a comprehensive review and theoretical analysis of federated causal effect estimation across both binary/continuous and time-to-event outcomes. We classify existing methods into weight-based strategies and optimization-based frameworks and further discuss extensions including personalized models, peer-to-peer communication, and model decomposition. For time-to-event outcomes, we examine federated Cox and Aalen-Johansen models, deriving asymptotic bias and variance under heterogeneity. Our analysis reveals that FedProx-style regularization achieves near-optimal bias-variance trade-offs compared to naive averaging and meta-analysis. We review related software tools and conclude by outlining opportunities, challenges, and future directions for scalable, fair, and trustworthy federated causal inference in distributed healthcare systems.
Related papers
- Data Fusion for Partial Identification of Causal Effects [62.56890808004615]
We propose a novel partial identification framework that enables researchers to answer key questions.<n>Is the causal effect positive or negative? and How severe must assumption violations be to overturn this conclusion?<n>We apply our framework to the Project STAR study, which investigates the effect of classroom size on students' third-grade standardized test performance.
arXiv Detail & Related papers (2025-05-30T07:13:01Z) - Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation [0.0]
Causal inference typically assumes centralized access to individual-level data.<n>We address this by estimating the Average Treatment Effect (ATE) from decentralized observational data using federated learning.
arXiv Detail & Related papers (2025-05-23T14:32:57Z) - Causally Fair Node Classification on Non-IID Graph Data [9.363036392218435]
This paper addresses the prevalent challenge in fairness-aware ML algorithms.<n>We tackle the overlooked domain of non-IID, graph-based settings.<n>We develop the Message Passing Variational Autoencoder for Causal Inference.
arXiv Detail & Related papers (2025-05-03T02:05:51Z) - Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks [5.909780773881451]
inference on deep neural networks (DNNs) for categorical or exponential family outcomes remains underexplored.<n>We propose a DNN estimator under generalized nonparametric regression models (GNRMs) and developing a rigorous inference framework.<n>We further apply the method to the electronic Intensive Care Unit (eICU) dataset to predict ICU risk and offer patient-centric insights for clinical decision-making.
arXiv Detail & Related papers (2025-04-12T21:32:42Z) - Targeted Data Fusion for Causal Survival Analysis Under Distribution Shift [46.84912148188679]
Causal inference has the potential to improve the generalizability, transportability, and replicability of scientific findings.<n>Existing data fusion methods focus on binary or continuous outcomes.<n>We propose two novel approaches for multi-source causal survival analysis.
arXiv Detail & Related papers (2025-01-30T23:21:25Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
We consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources.
We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations.
We propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction.
arXiv Detail & Related papers (2024-05-15T13:33:09Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
We study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable.
We introduce a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space.
arXiv Detail & Related papers (2021-06-07T10:14:18Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.