論文の概要: Synthetic Programming Elicitation and Repair for Text-to-Code in Very Low-Resource Programming Languages
- arxiv url: http://arxiv.org/abs/2406.03636v2
- Date: Fri, 14 Jun 2024 22:35:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 02:10:30.469869
- Title: Synthetic Programming Elicitation and Repair for Text-to-Code in Very Low-Resource Programming Languages
- Title(参考訳): 極低リソースプログラミング言語におけるテキストからコードへの合成プログラミングの励磁と補修
- Authors: Federico Mora, Justin Wong, Haley Lepe, Sahil Bhatia, Karim Elmaaroufi, George Varghese, Joseph E. Gonzalez, Elizabeth Polgreen, Sanjit A. Seshia,
- Abstract要約: SPEAC(emphsynthetic programming elicitation and compilation)を紹介する。
SPEACは意味的正当性を犠牲にすることなく、構文的正当性プログラムをはるかに頻繁に生成する。
ケーススタディにおいて,SPEACの性能を実証的に評価し,既存の検索基準や微調整基準と比較すると,SPEACは構文的に正しいプログラムをかなり頻繁に生成することがわかった。
- 参考スコア(独自算出の注目度): 21.18996339478024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) for code applications have demonstrated remarkable zero-shot fluency and instruction following on challenging code related tasks ranging from test case generation to self-repair. Unsurprisingly, however, models struggle to compose syntactically valid programs in programming languages unrepresented in pre-training, referred to as very low-resource Programming Languages (VLPLs). VLPLs appear in crucial settings, including domain-specific languages for internal tools and tool-chains for legacy languages. Inspired by an HCI technique called natural program elicitation, we propose designing an intermediate language that LLMs ``naturally'' know how to use and which can be automatically compiled to a target VLPL. When LLMs generate code that lies outside of this intermediate language, we use compiler techniques to repair the code into programs in the intermediate language. Overall, we introduce \emph{synthetic programming elicitation and compilation} (SPEAC), an approach that enables LLMs to generate syntactically valid code even for VLPLs. We empirically evaluate the performance of SPEAC in a case study and find that, compared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically correct programs significantly more frequently without sacrificing semantic correctness.
- Abstract(参考訳): コードアプリケーションのための大規模言語モデル(LLM)の最近の進歩は、テストケース生成から自己修復まで、コードに関連する課題に追従する、目覚ましいゼロショットの流速と命令を実証している。
しかし、当然のことながら、モデルは非常に低リソースのプログラミング言語 (VLPL) と呼ばれる事前学習で表現されていないプログラミング言語において、構文的に有効なプログラムを構成するのに苦労している。
VLPLは、内部ツール用のドメイン固有言語やレガシー言語用のツールチェーンなど、重要な設定で表示される。
そこで本研究では,LLMs ``naturally'' が使用方法を知っていて,対象の VLPL に自動的にコンパイル可能な中間言語を設計することを提案する。
LLMが中間言語外にあるコードを生成するとき、コンパイラ技術を使って中間言語のプログラムにコードを修復する。
SPEAC(emph{synthetic programming elicitation and compilation})は,LLMがVLPLでも構文的に有効なコードを生成することができる手法である。
ケーススタディにおいて,SPEACの性能を実証的に評価し,既存の検索基準や微調整基準と比較すると,意味的正当性を犠牲にすることなく,構文的正当性を著しく向上することがわかった。
関連論文リスト
- NoviCode: Generating Programs from Natural Language Utterances by Novices [59.71218039095155]
初心者非プログラマによるAPIと自然言語記述を入力とする新しいNLプログラミングタスクであるNoviCodeを提示する。
我々は、NoviCodeがコード合成領域における挑戦的なタスクであることを示し、非技術的命令から複雑なコードを生成することは、現在のText-to-Codeパラダイムを超えている。
論文 参考訳(メタデータ) (2024-07-15T11:26:03Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - AIOS Compiler: LLM as Interpreter for Natural Language Programming and Flow Programming of AI Agents [38.580779075892636]
我々は、コード表現と実行(CoRE)のための新しいシステムを開発する。
提案システムは,自然言語プログラミング,擬似コードプログラミング,フロープログラミングを同一表現で統合し,言語エージェントを構築する。
実行中に、冗長性を最小化するために外部メモリを組み込む。
論文 参考訳(メタデータ) (2024-05-11T04:29:03Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。