Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms
- URL: http://arxiv.org/abs/2406.03652v1
- Date: Wed, 5 Jun 2024 23:08:57 GMT
- Title: Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms
- Authors: Duy Khanh Lam,
- Abstract summary: This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth.
We introduce a novel framework for decision-making in combining strategies, irrespective of market conditions.
We show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.
Related papers
- LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - From Bandits Model to Deep Deterministic Policy Gradient, Reinforcement
Learning with Contextual Information [4.42532447134568]
In this study, we use two methods to overcome the issue with contextual information.
In order to investigate strategic trading in quantitative markets, we merged the earlier financial trading strategy known as constant proportion portfolio insurance ( CPPI) into deep deterministic policy gradient (DDPG)
The experimental results show that both methods can accelerate the progress of reinforcement learning to obtain the optimal solution.
arXiv Detail & Related papers (2023-10-01T11:25:20Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
This paper develops a catalog of such strategies and develops a framework for them.
It argues that they provide an efficient response to decision problems that are seemingly intractable due to high uncertainty.
It then proposes a framework to incorporate them into decision theory using multi-objective optimization.
arXiv Detail & Related papers (2023-09-06T16:14:32Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Intelligent Systematic Investment Agent: an ensemble of deep learning
and evolutionary strategies [0.0]
Our paper proposes a new approach for developing long-term investment strategies using an ensemble of evolutionary algorithms and a deep learning model.
Our methodology focuses on building long-term wealth by improving systematic investment planning (SIP) decisions on Exchange Traded Funds (ETF) over a period of time.
arXiv Detail & Related papers (2022-03-24T15:39:05Z) - Optimal Strategies of Quantum Metrology with a Strict Hierarchy [3.706744588098214]
We identify the ultimate precision limit of different families of strategies, including the parallel, the sequential, and the indefinite-causal-order strategies.
We provide an efficient algorithm that determines an optimal strategy within the family of strategies under consideration.
arXiv Detail & Related papers (2022-03-18T06:14:56Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
This article develops a framework for learning optimal strategies in real-world matching markets.
We show that there exists a welfare-versus-fairness trade-off that is characterized by the uncertainty level of acceptance.
We prove that participants can be better off with multi-stage matching compared to single-stage matching.
arXiv Detail & Related papers (2021-02-13T19:25:52Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
We study the problem of decision-making in the setting of a scarcity of shared resources when the preferences of agents are unknown a priori.
Our approach is based on the representation of preferences in a reproducing kernel Hilbert space.
We derive optimal strategies that maximize agents' expected payoffs.
arXiv Detail & Related papers (2020-10-29T03:08:22Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.