Sequential Portfolio Selection under Latent Side Information-Dependence Structure: Optimality and Universal Learning Algorithms
- URL: http://arxiv.org/abs/2501.06701v2
- Date: Mon, 20 Jan 2025 03:16:01 GMT
- Title: Sequential Portfolio Selection under Latent Side Information-Dependence Structure: Optimality and Universal Learning Algorithms
- Authors: Duy Khanh Lam,
- Abstract summary: We show that a dynamic strategy, which forms a portfolio based on perfect knowledge of the dependence structure and full market information over time, may not grow at a higher rate infinitely often than a constant strategy.
We show that a random optimal constant strategy almost surely exists, even when a limiting growth rate for the dynamic strategy does not.
- Score: 0.0
- License:
- Abstract: This paper investigates the investment problem of constructing an optimal no-short sequential portfolio strategy in a market with a latent dependence structure between asset prices and partly unobservable side information, which is often high-dimensional. The results demonstrate that a dynamic strategy, which forms a portfolio based on perfect knowledge of the dependence structure and full market information over time, may not grow at a higher rate infinitely often than a constant strategy, which remains invariant over time. Specifically, if the market is stationary, implying that the dependence structure is statistically stable, the growth rate of an optimal dynamic strategy, utilizing the maximum capacity of the entire market information, almost surely decays over time into an equilibrium state, asymptotically converging to the growth rate of a constant strategy. Technically, this work reassesses the common belief that a constant strategy only attains the optimal limiting growth rate of dynamic strategies when the market process is identically and independently distributed. By analyzing the dynamic log-optimal portfolio strategy as the optimal benchmark in a stationary market with side information, we show that a random optimal constant strategy almost surely exists, even when a limiting growth rate for the dynamic strategy does not. Consequently, two approaches to learning algorithms for portfolio construction are discussed, demonstrating the safety of removing side information from the learning process while still guaranteeing an asymptotic growth rate comparable to that of the optimal dynamic strategy.
Related papers
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.
EPO provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior.
Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information [12.032301674764552]
We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information.
We design a reinforcement learning framework that integrates generative autoencoders and online meta-learning to dynamically embed market information.
Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks.
arXiv Detail & Related papers (2025-01-29T20:56:59Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
This paper adopts a perspective where data gradually and continuously reveal over time.
The performance of these proposed strategies is guaranteed under specific markets.
In stationary and ergodic markets, the so-called Bayesian strategy utilizing true conditional distributions, based on observed past market information during investment, almost surely does not perform better than the proposed strategies in terms of empirical utility, Sharpe ratio, or growth rate, which, in contrast, do not rely on conditional distributions.
arXiv Detail & Related papers (2024-06-19T12:11:42Z) - Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms [0.0]
This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth.
We introduce a novel framework for decision-making in combining strategies, irrespective of market conditions.
We show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios.
arXiv Detail & Related papers (2024-06-05T23:08:57Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Spatio-Temporal Momentum: Jointly Learning Time-Series and
Cross-Sectional Strategies [3.351714665243138]
We introduce Spatio-Temporal Momentum strategies, which unify both time-series and cross-sectional momentum strategies by trading assets based on their cross-sectional momentum features over time.
We demonstrate that the model is able to retain its performance over benchmarks in the presence of high transaction costs.
In particular, we find that the model when coupled with least absolute shrinkage and turnover regularization results in the best performance over various transaction cost scenarios.
arXiv Detail & Related papers (2023-02-20T18:59:05Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.