論文の概要: Equivalence Set Restricted Latent Class Models (ESRLCM)
- arxiv url: http://arxiv.org/abs/2406.03653v1
- Date: Wed, 5 Jun 2024 23:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:55:13.483856
- Title: Equivalence Set Restricted Latent Class Models (ESRLCM)
- Title(参考訳): 等価セット制限潜在クラスモデル(ESRLCM)
- Authors: Jesse Bowers, Steve Culpepper,
- Abstract要約: 等価集合制限潜在クラスモデル(ESRLCM)と呼ばれる新しいベイズモデルを提案する。
このモデルは、一般的なアイテム応答確率を持つクラスタを特定し、従来の制限された潜在属性モデルよりも汎用的に実行する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent Class Models (LCMs) are used to cluster multivariate categorical data, commonly used to interpret survey responses. We propose a novel Bayesian model called the Equivalence Set Restricted Latent Class Model (ESRLCM). This model identifies clusters who have common item response probabilities, and does so more generically than traditional restricted latent attribute models. We verify the identifiability of ESRLCMs, and demonstrate the effectiveness in both simulations and real-world applications.
- Abstract(参考訳): 潜在クラスモデル(LCM)は多変量分類データをクラスタリングするために使われ、一般に調査応答の解釈に使用される。
等価集合制限潜在クラスモデル (ESRLCM) と呼ばれる新しいベイズモデルを提案する。
このモデルは、一般的なアイテム応答確率を持つクラスタを特定し、従来の制限された潜在属性モデルよりも汎用的に実行する。
本研究では,ESRLCMの識別可能性を検証するとともに,シミュレーションと実世界の応用の両面での有効性を実証する。
関連論文リスト
- Latent class analysis for multi-layer categorical data [0.0]
本稿では, より一般的な多層分類データについて考察する。
我々は,新しい統計モデル,多層潜在クラスモデル(多層LCM)を提案する。
論文 参考訳(メタデータ) (2024-08-10T12:31:31Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Latent class analysis with weighted responses [0.0]
本稿では、新しい生成モデル、重み付き潜在クラスモデル(WLCM)を提案する。
我々のモデルでは、遅延クラス構造を持つ任意の分布からデータの応答行列を生成することができる。
モデルの同定可能性について検討し,潜在クラスやその他のモデルパラメータを推定する効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-17T04:16:20Z) - Rethinking Log Odds: Linear Probability Modelling and Expert Advice in
Interpretable Machine Learning [8.831954614241234]
線形化付加モデル(LAM)とSubscaleHedgeの2つの拡張を含む、解釈可能な機械学習モデルのファミリーを紹介する。
LAMは、GAM(General Additive Models)におけるユビキタスなロジスティックリンク関数を置き換えるものであり、SubscaleHedgeはサブスケールと呼ばれる機能のサブセットでトレーニングされたベースモデルを組み合わせるためのエキスパートアドバイスアルゴリズムである。
論文 参考訳(メタデータ) (2022-11-11T17:21:57Z) - Dependent Latent Class Models [0.0]
潜在クラスモデル(LCM)は多変量分類データのクラスタリングに用いられる。
我々は、依存潜在クラスモデル(DLCM)と呼ばれる新しいベイズモデルを開発する。
シミュレーションおよび実世界のアプリケーションにおけるDLCMの有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T01:23:05Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Learning Mixtures of Random Utility Models with Features from Incomplete
Preferences [34.50516583809234]
それぞれの代替品が、おそらくエージェント間で異なる、機能のベクターを持つような、機能とそれらの混合を伴うRUMについて検討する。
我々はRUMと特徴の混合を不完全な嗜好を生成し、その識別性を特徴づけるモデルに拡張する。
本実験は,PL上でのMLEの有効性を示すものであり,統計効率と計算効率のトレードオフがある。
論文 参考訳(メタデータ) (2020-06-06T13:47:43Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。