論文の概要: Untrained Neural Nets for Snapshot Compressive Imaging: Theory and Algorithms
- arxiv url: http://arxiv.org/abs/2406.03694v1
- Date: Thu, 6 Jun 2024 02:22:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:35:44.974533
- Title: Untrained Neural Nets for Snapshot Compressive Imaging: Theory and Algorithms
- Title(参考訳): スナップショット圧縮イメージングのための未学習ニューラルネット:理論とアルゴリズム
- Authors: Mengyu Zhao, Xi Chen, Xin Yuan, Shirin Jalali,
- Abstract要約: スナップショット圧縮イメージング(SCI)は、単一の2次元計測から高次元(3D)データキューブを復元する。
本稿では、DIP(Deep Image prior)などの未学習ニューラルネットワーク(UNN)を用いたSCI回復アルゴリズムに着目し、ソース構造をモデル化する。
- 参考スコア(独自算出の注目度): 15.54330224419903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes from a single 2D measurement, enabling diverse applications like video and hyperspectral imaging to go beyond standard techniques in terms of acquisition speed and efficiency. In this paper, we focus on SCI recovery algorithms that employ untrained neural networks (UNNs), such as deep image prior (DIP), to model source structure. Such UNN-based methods are appealing as they have the potential of avoiding the computationally intensive retraining required for different source models and different measurement scenarios. We first develop a theoretical framework for characterizing the performance of such UNN-based methods. The theoretical framework, on the one hand, enables us to optimize the parameters of data-modulating masks, and on the other hand, provides a fundamental connection between the number of data frames that can be recovered from a single measurement to the parameters of the untrained NN. We also employ the recently proposed bagged-deep-image-prior (bagged-DIP) idea to develop SCI Bagged Deep Video Prior (SCI-BDVP) algorithms that address the common challenges faced by standard UNN solutions. Our experimental results show that in video SCI our proposed solution achieves state-of-the-art among UNN methods, and in the case of noisy measurements, it even outperforms supervised solutions.
- Abstract(参考訳): スナップショット圧縮イメージング(SCI)は、単一の2次元計測から高次元(3D)データキューブを復元する。
本稿では、DIP(Deep Image prior)などの未学習ニューラルネットワーク(UNN)を用いたSCI回復アルゴリズムに着目し、ソース構造をモデル化する。
このようなUNNベースの手法は、異なるソースモデルと異なる測定シナリオに必要とされる計算集約的な再トレーニングを避ける可能性を秘めている。
まず,これらの UNN に基づく手法の性能を特徴付ける理論的枠組みを開発する。
一方、理論的な枠組みでは、データ変調マスクのパラメータを最適化することができ、一方、トレーニングされていないNNのパラメータに対して単一の測定から復元できるデータフレームの数と基本的な接続を提供する。
我々はまた、最近提案されたbagged-deep-image-prior(bagged-DIP)のアイデアを用いて、標準NNソリューションが直面する共通の課題に対処するSCI Bagged Deep Video Prior(SCI-BDVP)アルゴリズムを開発した。
実験の結果,ビデオSCIでは提案手法がUNN手法の最先端化を実現しており,ノイズ測定では教師付き手法よりも優れていた。
関連論文リスト
- Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
そこで本稿では,従来の形状特徴を取り入れた画像分割問題を解くために,新しい2つのアルゴリズムを提案する。
提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
論文 参考訳(メタデータ) (2024-05-23T11:05:35Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Deep network series for large-scale high-dynamic range imaging [2.3759432635713895]
本稿では,大規模高ダイナミックレンジイメージングのための新しい手法を提案する。
ディープニューラルネットワーク(DNN)で訓練されたエンドツーエンドは、ほぼ瞬時に線形逆イメージング問題を解くことができる。
代替のPlug-and-Playアプローチは、高ダイナミックレンジの課題に対処する上で有効であるが、高度に反復的なアルゴリズムに依存している。
論文 参考訳(メタデータ) (2022-10-28T11:13:41Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
本稿では,関心領域(ROI)を限定されたCT値から再構成する手法を提案する。
ディープメソッドは高速で、データセットからの情報を活用することで、高いリコンストラクション品質に達することができる。
限られたデータからのROI再構成のために設計されたUDBFBと呼ばれる展開ニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2022-09-27T09:10:57Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
本稿では,モデルベースと深層学習に基づく手法の利点を融合して,深層展開型マルチサンプリング比CS-MRIフレームワークを提案する。
マルチグリッドアルゴリズムにインスパイアされ、まずCS-MRIに基づく最適化アルゴリズムを補正蒸留方式に組み込む。
各段の圧縮サンプリング比から適応的なステップ長と雑音レベルを学習するために条件モジュールを用いる。
論文 参考訳(メタデータ) (2022-05-14T13:36:27Z) - Dynamic Proximal Unrolling Network for Compressive Sensing Imaging [29.00266254916676]
本稿では,DPUNetと呼ばれる動的近位アンローリングネットワークについて述べる。
具体的には、DPUNetは、勾配降下による埋め込み物理モデルと、学習された動的近位写像による画像のインポーティングの両方を活用できる。
実験結果から,提案したDPUNetは,サンプル比や雑音レベルの異なる複数のCSIモダリティを1つのモデルで効果的に処理できることがわかった。
論文 参考訳(メタデータ) (2021-07-23T03:04:44Z) - Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [48.34565372026196]
本稿では,ポストリア(MAP)推定フレームワークに基づく新しいHSI再構成手法を提案する。
また,深層畳み込みニューラルネットワーク(DCNN)によるGSMモデルの局所平均の推定も提案する。
論文 参考訳(メタデータ) (2021-03-12T08:57:06Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problem は、デブロアリングや超解像など、多くの画像処理アプリケーションに現れる。
本稿では,一般化されたSteinUnbiased Risk Estimator(GSURE)の「投影変換」とCNNによる潜在画像のパラメータ化を含む損失関数の最小化に基づく,新たな画像復元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-04T08:52:46Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
画像復元手法として, (i)Deep Image Prior (DIP) と (ii) バックプロジェクション (BP) の2つの手法を提案する。
提案手法はBP-DIP(BP-DIP)と呼ばれ,高いPSNR値とより優れた推論実行時間を持つ通常のDIPよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-11T17:09:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。