論文の概要: Synthesizing Conversations from Unlabeled Documents using Automatic Response Segmentation
- arxiv url: http://arxiv.org/abs/2406.03703v1
- Date: Thu, 6 Jun 2024 02:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:35:44.958373
- Title: Synthesizing Conversations from Unlabeled Documents using Automatic Response Segmentation
- Title(参考訳): 自動応答セグメンテーションを用いたラベルなし文書からの会話の合成
- Authors: Fanyou Wu, Weijie Xu, Chandan K. Reddy, Srinivasan H. Sengamedu,
- Abstract要約: 我々は,会話型質問応答システムにおける不適切でコストのかかるデータトレーニングの課題に対処する。
本稿では,ロバストなダイアログ合成手法を提案する。
文境界におけるセグメンテーションを使わずに,ダイアログタスクのためのデータのセグメンテーションを学習する。
- 参考スコア(独自算出の注目度): 13.322409682814827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we tackle the challenge of inadequate and costly training data that has hindered the development of conversational question answering (ConvQA) systems. Enterprises have a large corpus of diverse internal documents. Instead of relying on a searching engine, a more compelling approach for people to comprehend these documents is to create a dialogue system. In this paper, we propose a robust dialog synthesising method. We learn the segmentation of data for the dialog task instead of using segmenting at sentence boundaries. The synthetic dataset generated by our proposed method achieves superior quality when compared to WikiDialog, as assessed through machine and human evaluations. By employing our inpainted data for ConvQA retrieval system pre-training, we observed a notable improvement in performance across OR-QuAC benchmarks.
- Abstract(参考訳): 本研究では,会話型質問応答(ConvQA)システムの開発を阻害する不適切な,コストのかかるトレーニングデータに挑戦する。
企業には、さまざまな内部文書の大規模なコーパスがある。
検索エンジンに頼るのではなく、これらの文書を理解するためのより魅力的なアプローチは、対話システムを作ることだ。
本稿では,ロバストなダイアログ合成手法を提案する。
文境界におけるセグメンテーションを使わずに,ダイアログタスクのためのデータのセグメンテーションを学習する。
提案手法により生成された合成データセットは, WikiDialogと比較して, 機械と人による評価により, 優れた品質を実現する。
ConvQA検索システムの事前学習に塗布したデータを用いることで,OR-QuACベンチマークの性能が顕著に向上することを確認した。
関連論文リスト
- SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
文書地上対話の助けを借りて,対話のセグメンテーションポイントを実現可能な定義を提供する。
我々は,9,478の対話を含むSuperDialsegと呼ばれる大規模教師付きデータセットをリリースする。
また、対話セグメンテーションタスクの5つのカテゴリにまたがる18のモデルを含むベンチマークも提供する。
論文 参考訳(メタデータ) (2023-05-15T06:08:01Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Dialog Inpainting: Turning Documents into Dialogs [12.131506050808207]
私たちは2つのデータセットを作成し、1900万の多様な情報検索ダイアログを作成しました。
WikiDialogの回答の妥当性と会話性は、既存の手作業によるデータセットよりも優れているか、あるいは優れていると判断する。
論文 参考訳(メタデータ) (2022-05-18T16:58:50Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - DG2: Data Augmentation Through Document Grounded Dialogue Generation [41.81030088619399]
生成対話モデルを用いて文書に基づく自動データ拡張手法を提案する。
元のデータセットを補うと、従来のデータ拡張手法よりも大幅に改善される。
論文 参考訳(メタデータ) (2021-12-15T18:50:14Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
音声対話型質問応答タスク(SCQA)を提案する。
SCQAは,音声発話とテキストコーパスから複雑な対話の流れをモデル化することを目的としている。
我々の主な目的は、音声とテキストの両方で会話的な質問に対処するQAシステムを構築することである。
論文 参考訳(メタデータ) (2020-10-18T05:53:39Z) - A Compare Aggregate Transformer for Understanding Document-grounded
Dialogue [27.04964963480175]
本稿では,対話コンテキストを協調的に認知し,応答生成のための文書情報を集約する比較集約変換器(CAT)を提案する。
CMUDoGデータセットの実験結果は、提案したCATモデルが最先端のアプローチと強力なベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2020-10-01T03:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。