論文の概要: A Compare Aggregate Transformer for Understanding Document-grounded
Dialogue
- arxiv url: http://arxiv.org/abs/2010.00190v1
- Date: Thu, 1 Oct 2020 03:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:02:30.310038
- Title: A Compare Aggregate Transformer for Understanding Document-grounded
Dialogue
- Title(参考訳): 文書接地対話理解のための比較集計変換器
- Authors: Longxuan Ma and Weinan Zhang and Runxin Sun and Ting Liu
- Abstract要約: 本稿では,対話コンテキストを協調的に認知し,応答生成のための文書情報を集約する比較集約変換器(CAT)を提案する。
CMUDoGデータセットの実験結果は、提案したCATモデルが最先端のアプローチと強力なベースラインよりも優れていることを示している。
- 参考スコア(独自算出の注目度): 27.04964963480175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unstructured documents serving as external knowledge of the dialogues help to
generate more informative responses. Previous research focused on knowledge
selection (KS) in the document with dialogue. However, dialogue history that is
not related to the current dialogue may introduce noise in the KS processing.
In this paper, we propose a Compare Aggregate Transformer (CAT) to jointly
denoise the dialogue context and aggregate the document information for
response generation. We designed two different comparison mechanisms to reduce
noise (before and during decoding). In addition, we propose two metrics for
evaluating document utilization efficiency based on word overlap. Experimental
results on the CMUDoG dataset show that the proposed CAT model outperforms the
state-of-the-art approach and strong baselines.
- Abstract(参考訳): 対話の外部知識として機能する構造化されていない文書は、より情報的な応答を生成するのに役立つ。
前回の研究では,対話を伴う文書における知識選択(ks)に着目した。
しかし、現在の対話とは無関係な対話履歴は、KS処理にノイズをもたらす可能性がある。
本稿では,対話コンテキストを協調的に認知し,応答生成のための文書情報を集約する比較集約変換器(CAT)を提案する。
我々はノイズ(前と復号時)を減らすための2つの異なる比較機構を設計した。
さらに,単語重なりに基づく文書利用効率評価のための2つの指標を提案する。
CMUDoGデータセットの実験結果は、提案したCATモデルが最先端のアプローチと強力なベースラインよりも優れていることを示している。
関連論文リスト
- Synthesizing Conversations from Unlabeled Documents using Automatic Response Segmentation [13.322409682814827]
我々は,会話型質問応答システムにおける不適切でコストのかかるデータトレーニングの課題に対処する。
本稿では,ロバストなダイアログ合成手法を提案する。
文境界におけるセグメンテーションを使わずに,ダイアログタスクのためのデータのセグメンテーションを学習する。
論文 参考訳(メタデータ) (2024-06-06T02:52:45Z) - Evaluating Large Language Models for Document-grounded Response
Generation in Information-Seeking Dialogues [17.41334279810008]
情報検索対話の文脈において,ChatGPTのような大規模言語モデル(LLM)を用いた文書グラウンド応答生成について検討する。
評価には4つのソーシャルサービスドメインにおけるタスク指向対話のMultiDoc2Dialコーパスを用いる。
両方のChatGPT変異体は、おそらく幻覚の存在を含む関連セグメントに存在しない情報を含んでいる可能性が高いが、それらは共有タスクの勝利システムと人間の反応の両方よりも高い評価を受けている。
論文 参考訳(メタデータ) (2023-09-21T07:28:03Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
対話トピック(DTS)は、様々な対話モデリングタスクにおいて重要な役割を果たす。
本稿では,ラベルなし対話データからトピック対応発話表現を学習する,教師なしDSSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-04T11:35:23Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - We've had this conversation before: A Novel Approach to Measuring Dialog
Similarity [9.218829323265371]
ダイアログ類似性のシナリオに対する編集距離距離の新たな適応法を提案する。
提案手法は,発話意味論,会話の流れ,参加者など,さまざまな会話の側面を考慮に入れている。
論文 参考訳(メタデータ) (2021-10-12T07:24:12Z) - DIALKI: Knowledge Identification in Conversational Systems through
Dialogue-Document Contextualization [41.21012318918167]
本稿では,文書構造を利用して対話型文節エンコーディングを実現する知識識別モデルを提案する。
本稿では,2つの文書的会話データセット上でのモデルの有効性を実証する。
論文 参考訳(メタデータ) (2021-09-10T05:40:37Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。