Pi-fusion: Physics-informed diffusion model for learning fluid dynamics
- URL: http://arxiv.org/abs/2406.03711v1
- Date: Thu, 6 Jun 2024 03:14:59 GMT
- Title: Pi-fusion: Physics-informed diffusion model for learning fluid dynamics
- Authors: Jing Qiu, Jiancheng Huang, Xiangdong Zhang, Zeng Lin, Minglei Pan, Zengding Liu, Fen Miao,
- Abstract summary: We propose Pi-fusion, a physics-informed diffusion model for predicting the temporal evolution of velocity and pressure field in fluid dynamics.
We introduce a training strategy based on reciprocal learning to learn the quasiperiodical pattern of fluid motion.
Experimental results show that the proposed approach significantly outperforms existing methods for predicting temporal evolution of velocity and pressure field.
- Score: 3.5197612808072147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed deep learning has been developed as a novel paradigm for learning physical dynamics recently. While general physics-informed deep learning methods have shown early promise in learning fluid dynamics, they are difficult to generalize in arbitrary time instants in real-world scenario, where the fluid motion can be considered as a time-variant trajectory involved large-scale particles. Inspired by the advantage of diffusion model in learning the distribution of data, we first propose Pi-fusion, a physics-informed diffusion model for predicting the temporal evolution of velocity and pressure field in fluid dynamics. Physics-informed guidance sampling is proposed in the inference procedure of Pi-fusion to improve the accuracy and interpretability of learning fluid dynamics. Furthermore, we introduce a training strategy based on reciprocal learning to learn the quasiperiodical pattern of fluid motion and thus improve the generalizability of the model. The proposed approach are then evaluated on both synthetic and real-world dataset, by comparing it with state-of-the-art physics-informed deep learning methods. Experimental results show that the proposed approach significantly outperforms existing methods for predicting temporal evolution of velocity and pressure field, confirming its strong generalization by drawing probabilistic inference of forward process and physics-informed guidance sampling. The proposed Pi-fusion can also be generalized in learning other physical dynamics governed by partial differential equations.
Related papers
- HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction [66.38369833561039]
HelmFluid is an accurate and interpretable predictor for fluid.
Inspired by Helmholtz theorem, we design a HelmDynamics block to learn Helmholtz dynamics.
By embedding the HelmDynamics block into a Multiscale Multihead Integral Architecture, HelmFluid can integrate learned Helmholtz dynamics along temporal dimension in multiple spatial scales.
arXiv Detail & Related papers (2023-10-16T16:38:32Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
We propose an approach for efficiently training diffusion models for probabilistic forecasting.
We train a time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models.
Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and flows spring systems.
arXiv Detail & Related papers (2023-06-03T02:46:31Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Learning to Estimate and Refine Fluid Motion with Physical Dynamics [9.258258917049845]
We propose an unsupervised learning based prediction-correction scheme for fluid flow estimation.
An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector.
The proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable.
arXiv Detail & Related papers (2022-06-21T15:46:49Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
We propose a physics-informed reinforcement learning strategy for fluid perception and reasoning from observations.
We develop a method for the tracking (perception) and analysis (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera.
arXiv Detail & Related papers (2022-03-11T07:01:23Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
We propose a physics-constrained machine learning method-based on reservoir computing- to time-accurately predict extreme events and long-term velocity statistics in a model of turbulent shear flow.
We show that the combination of the two approaches is able to accurately reproduce the velocity statistics and to predict the occurrence and amplitude of extreme events in a model of self-sustaining process in turbulence.
arXiv Detail & Related papers (2021-02-15T12:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.