Phase-Amplitude Reduction-Based Imitation Learning
- URL: http://arxiv.org/abs/2406.03735v1
- Date: Thu, 6 Jun 2024 04:19:55 GMT
- Title: Phase-Amplitude Reduction-Based Imitation Learning
- Authors: Satoshi Yamamori, Jun Morimoto,
- Abstract summary: We propose the use of the phase-amplitude reduction method to construct an imitation learning framework.
Unlike previous dynamical system-based imitation learning approaches, our proposed method allows the robot to imitate a limit cycle trajectory.
Our findings confirm that our proposed method can more accurately generate transient movements to converge on a target periodic attractor.
- Score: 0.9668407688201356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose the use of the phase-amplitude reduction method to construct an imitation learning framework. Imitating human movement trajectories is recognized as a promising strategy for generating a range of human-like robot movements. Unlike previous dynamical system-based imitation learning approaches, our proposed method allows the robot not only to imitate a limit cycle trajectory but also to replicate the transient movement from the initial or disturbed state to the limit cycle. Consequently, our method offers a safer imitation learning approach that avoids generating unpredictable motions immediately after disturbances or from a specified initial state. We first validated our proposed method by reconstructing a simple limit-cycle attractor. We then compared the proposed approach with a conventional method on a lemniscate trajectory tracking task with a simulated robot arm. Our findings confirm that our proposed method can more accurately generate transient movements to converge on a target periodic attractor compared to the previous standard approach. Subsequently, we applied our method to a real robot arm to imitate periodic human movements.
Related papers
- Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - DiAReL: Reinforcement Learning with Disturbance Awareness for Robust
Sim2Real Policy Transfer in Robot Control [0.0]
Delayed Markov decision processes fulfill the Markov property by augmenting the state space of agents with a finite time window of recently committed actions.
We introduce a disturbance-augmented Markov decision process in delayed settings as a novel representation to incorporate disturbance estimation in training on-policy reinforcement learning algorithms.
arXiv Detail & Related papers (2023-06-15T10:11:38Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
We show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration.
The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework.
arXiv Detail & Related papers (2022-05-02T19:49:53Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Reactive Motion Generation on Learned Riemannian Manifolds [14.325005233326497]
We show how to generate motion skills based on complicated motion patterns demonstrated by a human operator.
We propose a technique for facilitating on-the-fly end-effector/multiple-limb obstacle avoidance by reshaping the learned manifold.
We extensively tested our approach in task space and joint space scenarios using a 7-DoF robotic manipulator.
arXiv Detail & Related papers (2022-03-15T10:28:16Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
Current planners are unable to vary key gait parameters continuously while the robot is in motion.
In this work we address this limitation by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, foot step height and full stance duration.
arXiv Detail & Related papers (2021-12-09T10:02:02Z) - Contact-Aware Retargeting of Skinned Motion [49.71236739408685]
This paper introduces a motion estimation method that preserves self-contacts and prevents interpenetration.
The method identifies self-contacts and ground contacts in the input motion, and optimize the motion to apply to the output skeleton.
In experiments, our results quantitatively outperform previous methods and we conduct a user study where our retargeted motions are rated as higher-quality than those produced by recent works.
arXiv Detail & Related papers (2021-09-15T17:05:02Z) - Motion Generation Using Bilateral Control-Based Imitation Learning with
Autoregressive Learning [3.4410212782758047]
We propose a method of autoregressive learning for bilateral control-based imitation learning.
A new neural network model for implementing autoregressive learning is proposed.
arXiv Detail & Related papers (2020-11-12T04:35:48Z) - Thinking While Moving: Deep Reinforcement Learning with Concurrent
Control [122.49572467292293]
We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system.
Much like a person or an animal, the robot must think and move at the same time, deciding on its next action before the previous one has completed.
arXiv Detail & Related papers (2020-04-13T17:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.