論文の概要: Polyhedral Conic Classifier for CTR Prediction
- arxiv url: http://arxiv.org/abs/2406.03892v1
- Date: Thu, 6 Jun 2024 09:26:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 15:39:42.150926
- Title: Polyhedral Conic Classifier for CTR Prediction
- Title(参考訳): CTR予測のための多面コニック分類器
- Authors: Beyza Turkmen, Ramazan Tarik Turksoy, Hasan Saribas, Hakan Cevikalp,
- Abstract要約: 本稿では,産業レコメンデーションシステムにおけるクリックスルー率(CTR)予測の新しい手法を提案する。
これは数値的不均衡と幾何学的非対称性の固有の課題に対処する。
我々は多面体円錐関数を用いたディープニューラルネットワーク分類器を用いた。
- 参考スコア(独自算出の注目度): 8.728085874038229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach for click-through rate (CTR) prediction within industrial recommender systems, addressing the inherent challenges of numerical imbalance and geometric asymmetry. These challenges stem from imbalanced datasets, where positive (click) instances occur less frequently than negatives (non-clicks), and geometrically asymmetric distributions, where positive samples exhibit visually coherent patterns while negatives demonstrate greater diversity. To address these challenges, we have used a deep neural network classifier that uses the polyhedral conic functions. This classifier is similar to the one-class classifiers in spirit and it returns compact polyhedral acceptance regions to separate the positive class samples from the negative samples that have diverse distributions. Extensive experiments have been conducted to test the proposed approach using state-of-the-art (SOTA) CTR prediction models on four public datasets, namely Criteo, Avazu, MovieLens and Frappe. The experimental evaluations highlight the superiority of our proposed approach over Binary Cross Entropy (BCE) Loss, which is widely used in CTR prediction tasks.
- Abstract(参考訳): 本稿では,産業レコメンデーションシステムにおけるクリックスルー率(CTR)予測の新たなアプローチを提案し,数値的不均衡と幾何学的非対称性の固有の課題に対処する。
これらの課題は、正(クリック)のインスタンスが負(非クリック)よりも頻度が低い不均衡なデータセットと、正のサンプルが視覚的に一貫性のあるパターンを示し、負のサンプルがより多様性を示す幾何学的に非対称な分布に起因している。
これらの課題に対処するために,多面体円錐関数を用いたディープニューラルネットワーク分類器を用いた。
この分類器は精神における一級分類器と似ており、様々な分布を持つ負のサンプルから正のクラス標本を分離するためにコンパクトな多面的受容領域を返す。
提案手法を、Criteo、Avazu、MovieLens、Frappeの4つの公開データセット上で、最先端(SOTA) CTR予測モデルを用いて検証する大規模な実験が実施されている。
実験により,CTR予測タスクに広く用いられているBCE損失に対して,提案手法の優位性を強調した。
関連論文リスト
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts [3.7819322027528113]
本稿では,教師付きコントラスト学習を用いた新たな正規化手法を提案する。
サブポピュレーションシフトや領域一般化などの分布シフトをエミュレートするベンチマークデータセットの実験は,提案手法の利点を実証している。
論文 参考訳(メタデータ) (2023-04-07T01:45:09Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
提案手法は, 再加重法やオーバーサンプリング法と比較して, 平均精度を向上することを示す。
論文 参考訳(メタデータ) (2022-04-19T06:02:53Z) - Feature Extraction Framework based on Contrastive Learning with Adaptive
Positive and Negative Samples [1.4467794332678539]
フレームワークは、教師なし、教師なし、および半教師なしの単一ビュー特徴抽出に適している。
CL-FEFAは、特徴抽出の結果から正および負のサンプルを適応的に構成する。
CL-FEFAは、ポテンシャル構造の類似したサンプルである正のサンプル間の相互情報を考慮し、特徴抽出の利点を理論的に支持する。
論文 参考訳(メタデータ) (2022-01-11T13:34:03Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
ディープクラスタリングのための非コントラスト表現学習は、負の例のない代表的手法であるBYOLに基づいている。
NCCは、すべてのクラスタが十分に分離され、クラスタ内の例がコンパクトな埋め込み空間を形成する。
ImageNet-1Kを含むいくつかのクラスタリングベンチマークデータセットの実験結果は、NCCが最先端の手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2021-11-23T12:21:53Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z) - Conditional Negative Sampling for Contrastive Learning of Visual
Representations [19.136685699971864]
難解な負の選択、あるいは現在の例に類似した選択は、より強い表現をもたらす可能性があることを示す。
それぞれの正の周りの「リング」に、負を条件付きでサンプリングする相互情報推定器のファミリーを導入する。
これらの推定器は, 偏差が大きいが, NCEよりも分散度が低いことが証明された。
論文 参考訳(メタデータ) (2020-10-05T14:17:32Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。