Improving Event Time Prediction by Learning to Partition the Event Time
Space
- URL: http://arxiv.org/abs/2310.15853v1
- Date: Tue, 24 Oct 2023 14:11:40 GMT
- Title: Improving Event Time Prediction by Learning to Partition the Event Time
Space
- Authors: Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael Pencina, Matthew
M. Engelhard
- Abstract summary: Recently developed survival analysis methods improve upon existing approaches by predicting the probability of event occurrence in each of a number pre-specified (discrete) time intervals.
In clinical settings with limited available data, it is often preferable to judiciously partition the event time space into a limited number of intervals well suited to the prediction task at hand.
We show that in two simulated datasets, we are able to recover intervals that match the underlying generative model.
We then demonstrate improved prediction performance on three real-world observational datasets, including a large, newly harmonized stroke risk prediction dataset.
- Score: 13.5391816206237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently developed survival analysis methods improve upon existing approaches
by predicting the probability of event occurrence in each of a number
pre-specified (discrete) time intervals. By avoiding placing strong parametric
assumptions on the event density, this approach tends to improve prediction
performance, particularly when data are plentiful. However, in clinical
settings with limited available data, it is often preferable to judiciously
partition the event time space into a limited number of intervals well suited
to the prediction task at hand. In this work, we develop a method to learn from
data a set of cut points defining such a partition. We show that in two
simulated datasets, we are able to recover intervals that match the underlying
generative model. We then demonstrate improved prediction performance on three
real-world observational datasets, including a large, newly harmonized stroke
risk prediction dataset. Finally, we argue that our approach facilitates
clinical decision-making by suggesting time intervals that are most appropriate
for each task, in the sense that they facilitate more accurate risk prediction.
Related papers
- STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning [11.324029387605888]
We propose an early-temporal forecasting model based on Multi-Objective reinforcement learning.
Our method demonstrates superior performance on three large-scale real-world datasets.
arXiv Detail & Related papers (2024-06-06T13:03:51Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
We develop more reliable methods for uncertainty in neural TPP models via the framework of conformal prediction.
A primary objective is to generate a distribution-free joint prediction region for an event's arrival time and mark, with a finite-sample marginal coverage guarantee.
arXiv Detail & Related papers (2024-01-09T15:28:29Z) - ForecastPFN: Synthetically-Trained Zero-Shot Forecasting [16.12148632541671]
ForecastPFN is the first zero-shot forecasting model trained purely on a novel synthetic data distribution.
We show that zero-shot predictions made by ForecastPFN are more accurate and faster compared to state-of-the-art forecasting methods.
arXiv Detail & Related papers (2023-11-03T14:17:11Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
We propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty.
Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective.
We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time.
arXiv Detail & Related papers (2023-10-25T03:33:45Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.