論文の概要: From Tissue Plane to Organ World: A Benchmark Dataset for Multimodal Biomedical Image Registration using Deep Co-Attention Networks
- arxiv url: http://arxiv.org/abs/2406.04105v1
- Date: Thu, 6 Jun 2024 14:21:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:40:14.305698
- Title: From Tissue Plane to Organ World: A Benchmark Dataset for Multimodal Biomedical Image Registration using Deep Co-Attention Networks
- Title(参考訳): 組織平面から組織世界へ:ディープコアテンションネットワークを用いたマルチモーダルバイオメディカル画像登録のためのベンチマークデータセット
- Authors: Yifeng Wang, Weipeng Li, Thomas Pearce, Haohan Wang,
- Abstract要約: 組織と臓器の登録は、特定の組織学的セクションがヒトの臓器のごく一部しか取得できないため、追加の課題となる。
私たちは、さまざまな機関からソースを得たATOMベンチマークデータセットを作成し、この課題を機械学習問題に変換することを目的としています。
RegisMCANモデルの性能は,臓器画像から抽出した部分領域が全体の3次元体積内からどこから抽出されたのかを正確に予測する深層学習の可能性を示している。
- 参考スコア(独自算出の注目度): 17.718448707146017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correlating neuropathology with neuroimaging findings provides a multiscale view of pathologic changes in the human organ spanning the meso- to micro-scales, and is an emerging methodology expected to shed light on numerous disease states. To gain the most information from this multimodal, multiscale approach, it is desirable to identify precisely where a histologic tissue section was taken from within the organ in order to correlate with the tissue features in exactly the same organ region. Histology-to-organ registration poses an extra challenge, as any given histologic section can capture only a small portion of a human organ. Making use of the capabilities of state-of-the-art deep learning models, we unlock the potential to address and solve such intricate challenges. Therefore, we create the ATOM benchmark dataset, sourced from diverse institutions, with the primary objective of transforming this challenge into a machine learning problem and delivering outstanding outcomes that enlighten the biomedical community. The performance of our RegisMCAN model demonstrates the potential of deep learning to accurately predict where a subregion extracted from an organ image was obtained from within the overall 3D volume. The code and dataset can be found at: https://github.com/haizailache999/Image-Registration/tree/main
- Abstract(参考訳): 神経病理学と神経画像所見との関連は、メソからマイクロスケールにまたがるヒト臓器の病理学的変化を多面的に観察し、多くの疾患状態に光を当てることが期待される新たな方法論である。
このマルチモーダル・マルチスケールアプローチから最も多くの情報を得るためには、組織学的組織部位が臓器内からどこから取られたのかを正確に把握し、組織の特徴と正確に同一の臓器領域で相関することが必要である。
組織と臓器の登録は、特定の組織学的セクションがヒトの臓器のごく一部しか取得できないため、追加の課題となる。
最先端のディープラーニングモデルの能力を活用して、このような複雑な課題に対処し解決する可能性を解き放つ。
そこで我々は,この課題を機械学習問題に転換し,バイオメディカルコミュニティを啓蒙する卓越した成果をもたらすことを目的として,多様な機関から得られたATOMベンチマークデータセットを作成する。
RegisMCANモデルの性能は,臓器画像から抽出した部分領域が全体の3次元体積内からどこから抽出されたのかを正確に予測する深層学習の可能性を示している。
コードとデータセットは、https://github.com/haizailache999/Image-Registration/tree/mainで確認できる。
関連論文リスト
- Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、運動ニューロン変性を伴う複雑な神経変性疾患である。
ディープラーニングは、コンピュータビジョンにおける機械学習プログラムの傑出したクラスになった。
本研究では、視覚変換器アーキテクチャのパワーを活用してALS対象と制御群を区別するフレームワークであるSF2Formerを紹介する。
論文 参考訳(メタデータ) (2023-02-21T18:16:20Z) - UNesT: Local Spatial Representation Learning with Hierarchical
Transformer for Efficient Medical Segmentation [29.287521185541298]
我々は、UNesTが常に最先端の性能を達成し、その一般化性とデータ効率を評価することを示す。
我々は、UNesTが常に最先端の性能を達成し、その一般化性とデータ効率を評価することを示す。
論文 参考訳(メタデータ) (2022-09-28T19:14:38Z) - Global Contrast Masked Autoencoders Are Powerful Pathological
Representation Learners [11.162001837248166]
本稿では,自己教師付き学習モデルであるGCMAE(Global contrast-masked Autoencoder)を提案する。
GCMAEは3つの異なる疾患特異的ヘマトキシリンとエオシン(HE)染色された病理データセットを用いて、広範囲にわたる実験により、再現性のある表現を学習する能力を示した。
論文 参考訳(メタデータ) (2022-05-18T16:28:56Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
今回我々は,ヒト後脳の多数の細胞体染色組織における細胞構造学的領域をマッピングするための新しいワークフローを提案する。
これはDeep Convolutional Neural Network (CNN)に基づいており、アノテーション付きの一対のセクションイメージに基づいてトレーニングされており、その間に多数の注釈のないセクションがある。
新しいワークフローは、セクションの3D再構成を必要とせず、組織学的アーティファクトに対して堅牢である。
論文 参考訳(メタデータ) (2020-11-25T16:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。