CMAR-Net: Accurate Cross-Modal 3D SAR Reconstruction of Vehicle Targets with Sparse Multi-Baseline Data
- URL: http://arxiv.org/abs/2406.04158v3
- Date: Mon, 13 Jan 2025 17:44:43 GMT
- Title: CMAR-Net: Accurate Cross-Modal 3D SAR Reconstruction of Vehicle Targets with Sparse Multi-Baseline Data
- Authors: Da Li, Guoqiang Zhao, Houjun Sun, Jiacheng Bao,
- Abstract summary: Multi-baseline Synthetic Aperture Radar (SAR) three-dimensional (3D) tomography is a crucial remote sensing technique.
Recent advancements in sparse 3D SAR, which rely on data from limited apertures, have gained attention as a cost-effective alternative.
We introduce a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) to enhance 3D SAR imaging by integrating heterogeneous information.
- Score: 5.6680936716261705
- License:
- Abstract: Multi-baseline Synthetic Aperture Radar (SAR) three-dimensional (3D) tomography is a crucial remote sensing technique that provides 3D resolution unavailable in conventional SAR imaging. However, achieving high-quality imaging typically requires multi-angle or full-aperture data, resulting in significant imaging costs. Recent advancements in sparse 3D SAR, which rely on data from limited apertures, have gained attention as a cost-effective alternative. Notably, deep learning techniques have markedly enhanced the imaging quality of sparse 3D SAR. Despite these advancements, existing methods primarily depend on high-resolution radar images for supervising the training of deep neural networks (DNNs). This exclusive dependence on single-modal data prevents the introduction of complementary information from other data sources, limiting further improvements in imaging performance. In this paper, we introduce a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) to enhance 3D SAR imaging by integrating heterogeneous information. Leveraging cross-modal supervision from 2D optical images and error transfer guaranteed by differentiable rendering, CMAR-Net achieves efficient training and reconstructs highly sparse multi-baseline SAR data into visually structured and accurate 3D images, particularly for vehicle targets. Extensive experiments on simulated and real-world datasets demonstrate that CMAR-Net significantly outperforms SOTA sparse reconstruction algorithms based on compressed sensing (CS) and deep learning (DL). Furthermore, our method eliminates the need for time-consuming full-aperture data preprocessing and relies solely on computer-rendered optical images, significantly reducing dataset construction costs. This work highlights the potential of deep learning for multi-baseline SAR 3D imaging and introduces a novel framework for radar imaging research through cross-modal learning.
Related papers
- Multi-Resolution SAR and Optical Remote Sensing Image Registration Methods: A Review, Datasets, and Future Perspectives [13.749888089968373]
Synthetic Aperture Radar (SAR) and optical image registration is essential for remote sensing data fusion.
As image resolution increases, fine SAR textures become more significant, leading to alignment issues and 3D spatial discrepancies.
The MultiResSAR dataset was created, containing over 10k pairs of multi-source, multi-resolution, and multi-scene SAR and optical images.
arXiv Detail & Related papers (2025-02-03T02:51:30Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.
Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.
Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms.
Recently, deep learning (DL) methods have been used for more accurate holographic processing.
We propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality.
arXiv Detail & Related papers (2022-05-25T17:13:45Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
We present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data.
Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data.
Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data.
arXiv Detail & Related papers (2021-11-03T08:20:03Z) - Stereo Matching by Self-supervision of Multiscopic Vision [65.38359887232025]
We propose a new self-supervised framework for stereo matching utilizing multiple images captured at aligned camera positions.
A cross photometric loss, an uncertainty-aware mutual-supervision loss, and a new smoothness loss are introduced to optimize the network.
Our model obtains better disparity maps than previous unsupervised methods on the KITTI dataset.
arXiv Detail & Related papers (2021-04-09T02:58:59Z) - Compressive spectral image classification using 3D coded convolutional
neural network [12.67293744927537]
This paper develops a novel deep learning HIC approach based on measurements of coded-aperture snapshot spectral imagers (CASSI)
A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN), is proposed to efficiently solve for the classification problem.
The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures.
arXiv Detail & Related papers (2020-09-23T15:05:57Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z) - A Novel Recurrent Encoder-Decoder Structure for Large-Scale Multi-view
Stereo Reconstruction from An Open Aerial Dataset [6.319667056655425]
We present a synthetic aerial dataset, called the WHU dataset, which is the first large-scale multi-view aerial dataset.
We also introduce in this paper a novel network, called RED-Net, for wide-range depth inference.
Our experiments confirmed that not only did our method exceed the current state-of-the-art MVS methods by more than 50% mean absolute error (MAE) with less memory and computational cost, but its efficiency as well.
arXiv Detail & Related papers (2020-03-02T03:04:13Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.