論文の概要: A Voxel-based Approach for Simulating Microbial Decomposition in Soil: Comparison with LBM and Improvement of Morphological Models
- arxiv url: http://arxiv.org/abs/2406.04177v1
- Date: Thu, 6 Jun 2024 15:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:10:28.875954
- Title: A Voxel-based Approach for Simulating Microbial Decomposition in Soil: Comparison with LBM and Improvement of Morphological Models
- Title(参考訳): 土壌中の微生物分解シミュレーションのためのVoxel-based Approach: LBMとの比較と形態モデルの改善
- Authors: Mouad Klai, Olivier Monga, Mohamed Soufiane Jouini, Valérie Pot,
- Abstract要約: 本研究では,有機物の微生物分解をシミュレーションするための新しい計算手法を提案する。
この方法は、変換および拡散過程をシミュレートするために、連結ボクセルの値付きグラフを用いる。
得られたモデルは、多孔質媒体の拡散変換過程をシミュレートするために適応することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a new computational approach for simulating the microbial decomposition of organic matter, from 3D micro-computed tomography (micro-CT) images of soil. The method employs a valuated graph of connected voxels to simulate transformation and diffusion processes involved in microbial decomposition within the complex soil matrix. The resulting model can be adapted to simulate any diffusion-transformation processes in porous media. We implemented parallelization strategies and explored different numerical methods, including implicit, explicit, synchronous, and asynchronous schemes. To validate our method, we compared simulation outputs with those provided by LBioS and by Mosaic models. LBioS uses a lattice-Boltzmann method for diffusion and Mosaic takes benefit of Pore Network Geometrical Modelling (PNGM) by means of geometrical primitives such as spheres and ellipsoids. This approach achieved comparable results to traditional LBM-based simulations, but required only one-fourth of the computing time. Compared to Mosaic simulation, the proposed method is slower but more accurate and does not require any calibration. Furthermore, we present a theoretical framework and an application example to enhance PNGM-based simulations. This is accomplished by approximating the diffusional conductance coefficients using stochastic gradient descent and data generated by the current approach.
- Abstract(参考訳): 本研究では,土壌の3次元マイクロCT画像から有機物の微生物分解をシミュレーションするための新しい計算手法を提案する。
この方法では、複雑な土壌マトリックス内の微生物分解に関与する変換および拡散過程をシミュレートするために、連結ボクセルの評価グラフを用いる。
得られたモデルは、多孔質媒体の拡散変換過程をシミュレートするために適応することができる。
我々は並列化戦略を実装し、暗黙的、明示的、同期的、非同期的なスキームを含む様々な数値手法を探索した。
提案手法を検証するため,LBioSとモザイクモデルによるシミュレーション結果と比較した。
LBioSは拡散のために格子ボルツマン法を使用し、モザイクは球面や楕円体のような幾何学的プリミティブを用いて孔ネットワーク幾何学的モデリング(PNGM)を利用する。
このアプローチは従来のLBMベースのシミュレーションに匹敵する結果を得たが、計算時間の4分の1しか必要としなかった。
モザイクシミュレーションと比較して、提案手法は遅いがより正確であり、キャリブレーションを必要としない。
さらに、PNGMに基づくシミュレーションを強化するための理論的枠組みと応用例を示す。
これは、確率勾配降下と現在のアプローチによって生成されたデータを用いて拡散伝導係数を近似することにより達成される。
関連論文リスト
- Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
類似しているが異なる領域における血流シミュレーションの効率的な予測法として,データ駆動サロゲートモデルを提案する。
幾何パラメータに対する非侵入的還元次数モデルが適切な分解を用いて構築される。
ラジアル基底関数補間器は、縮小順序モデルの縮小係数を予測するために訓練される。
論文 参考訳(メタデータ) (2023-02-21T21:18:17Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
シミュレーションベース推論のための2つの合成確率法を提案する。
本研究では,シミュレータによって生成された合成データを用いて,条件付きエネルギーベースモデル(EBM)を学習する。
本研究は, カニの神経科学ネットワークのモデルに適用し, 各種合成データセット上での両手法の特性を実証する。
論文 参考訳(メタデータ) (2022-10-26T14:38:24Z) - GANs and Closures: Micro-Macro Consistency in Multiscale Modeling [0.0]
本稿では,物理シミュレーションとバイアス法を併用して,条件分布をサンプリングする手法を提案する。
このフレームワークは, マルチスケールSDE動的システムサンプリングを改善することができることを示すとともに, 複雑性が増大するシステムにも期待できることを示す。
論文 参考訳(メタデータ) (2022-08-23T03:45:39Z) - Generic tool for numerical simulation of transformation-diffusion
processes in complex volume geometric shapes: application to microbial
decomposition of organic matter [0.0]
本稿では,複素体積幾何学形状における変換拡散過程の数値シミュレーションのための一般的な枠組みを提案する。
我々はMOSAIC法を大幅に一般化し、改良し、より汎用的で効率的な数値シミュレーション手法を得た。
論文 参考訳(メタデータ) (2021-10-07T01:01:48Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。