論文の概要: DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs
- arxiv url: http://arxiv.org/abs/2406.04334v1
- Date: Thu, 6 Jun 2024 17:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 13:11:04.291004
- Title: DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs
- Title(参考訳): DeepStack: Visual Tokensのスタック化は驚くほどシンプルで、LMMに有効
- Authors: Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, Yu-Gang Jiang,
- Abstract要約: ほとんどの大きなマルチモーダルモデル(LMM)は、大きな言語モデル(LLM)の第1層にシーケンスとして視覚トークンを供給することによって実装される。
本稿では,LMMのための新しいアーキテクチャであるDeepStackについて述べる。LMMの言語層とビジョントランスフォーマーの$N$レイヤを考慮すると,視覚トークンを$N$グループに積み上げ,各グループを下位から上位までの整列トランスフォーマー層に供給する。
驚くべきことに、この単純な手法は、レイヤ間の視覚トークン間の相互作用をモデル化するLMMのパワーを、最小限のコストで大幅に向上させる。
- 参考スコア(独自算出の注目度): 137.91216976536506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computation and memory costs, as it has to handle a large number of additional tokens in its input layer. This paper presents a new architecture DeepStack for LMMs. Considering $N$ layers in the language and vision transformer of LMMs, we stack the visual tokens into $N$ groups and feed each group to its aligned transformer layer \textit{from bottom to top}. Surprisingly, this simple method greatly enhances the power of LMMs to model interactions among visual tokens across layers but with minimal additional cost. We apply DeepStack to both language and vision transformer in LMMs, and validate the effectiveness of DeepStack LMMs with extensive empirical results. Using the same context length, our DeepStack 7B and 13B parameters surpass their counterparts by \textbf{2.7} and \textbf{2.9} on average across \textbf{9} benchmarks, respectively. Using only one-fifth of the context length, DeepStack rivals closely to the counterparts that use the full context length. These gains are particularly pronounced on high-resolution tasks, e.g., \textbf{4.2}, \textbf{11.0}, and \textbf{4.0} improvements on TextVQA, DocVQA, and InfoVQA compared to LLaVA-1.5-7B, respectively. We further apply DeepStack to vision transformer layers, which brings us a similar amount of improvements, \textbf{3.8} on average compared with LLaVA-1.5-7B.
- Abstract(参考訳): ほとんどの大規模マルチモーダルモデル(LMM)は、大きな言語モデル(LLM)の第1層にシーケンスとして視覚トークンを供給することによって実装される。
結果のアーキテクチャは単純だが、入力層に多数のトークンを処理しなければならないため、計算とメモリコストが大幅に向上する。
本稿では,LMMのための新しいアーキテクチャであるDeepStackを提案する。
LMMの言語とヴィジュアルトランスフォーマーの$N$レイヤを考慮すると、視覚トークンを$N$グループに積み上げ、各グループをその整列トランスフォーマー層 \textit{from bottom to top} にフィードする。
驚くべきことに、この単純な手法は、レイヤ間の視覚トークン間の相互作用をモデル化するLMMのパワーを、最小限のコストで大幅に向上させる。
We apply DeepStack to both language and vision transformer in LMMs, and whether the effective of DeepStack LMMs with extensive empirical results。
同じコンテキスト長を用いて、私たちのDeepStack 7B と 13B のパラメータは、それぞれ \textbf{2.7} と \textbf{2.9} のベンチマークでそれぞれ平均してそれを上回る。
コンテキスト長の5分の1しか使用していないDeepStackは、完全なコンテキスト長を使用するコンテクストと密接に競合する。
これらの利得は、LLaVA-1.5-7Bと比較して、TextVQA、DocVQA、InfoVQAの高分解能なタスク、例えば、 \textbf{4.2}、 \textbf{11.0}、 \textbf{4.0} で特に顕著である。
我々はさらに、DeepStackを視覚トランスフォーマー層に適用し、LLaVA-1.5-7Bと比較して、同様の量の改善を実現している。
関連論文リスト
- Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
MLLM(Multimodal Large Language Models)は、入力イメージを視覚トークンとしてエンコードし、それらを言語バックボーンに入力する。
画像解像度が大きくなるにつれて、視覚トークンの数は2次的に増加し、膨大な計算コストがかかる。
本稿では,各層を浅層から深層まで保持する最小限の視覚トークンを求めるために,欲求探索アルゴリズム(G-Search)を提案する。
論文 参考訳(メタデータ) (2024-11-30T18:54:32Z) - ATP-LLaVA: Adaptive Token Pruning for Large Vision Language Models [32.6661928486072]
ATP-LLaVAは、大規模言語モデル層ごとにインスタンス固有のトークンプルーニング比を適応的に決定する新しいアプローチである。
提案手法は,7つの広く使用されているベンチマークにおいて,最小1.9%の劣化しかなく,パフォーマンスを維持しながら平均トークン数を75%削減する。
論文 参考訳(メタデータ) (2024-11-30T11:42:35Z) - Reassessing Layer Pruning in LLMs: New Insights and Methods [24.394438652261982]
単純なアプローチ、すなわち、最後の25%のレイヤをプルーニングし、その後にtextttlm_headと残りの3つのレイヤを微調整することで、非常に高いパフォーマンスが得られることを示す。
私たちはHfaceで最適なモデルウェイトをリリースし、コードはGitHubで入手できる。
論文 参考訳(メタデータ) (2024-11-23T13:31:16Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
VLMは、大量の入力トークンを処理するのに必要な計算量が多いため、推論中に高いレイテンシで制約されることが多い。
高いトークン圧縮設定に適したアプローチを構築するために、最初のステップを踏み出します。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
ビジュアルプロジェクタは、ビジュアルエンコーダとLarge Language Model(LLM)の間に必須のブリッジとして機能する。
本稿では,密集した特徴を注入して凝縮した視覚トークンを生成するために,粗く細かなスキームを取り入れた新しいビジュアルプロジェクタを提案する。
我々のアプローチでは、ビジュアルトークンを75%89%圧縮し、多様なベンチマークで同等またはさらに優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-02T16:10:55Z) - Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training [42.89066583603415]
この作業では、3つの重要な$textitO$bstacleを識別する: 包括的な評価の欠如、(textitO$2) スケーリングのためのテストされていない生存性、(textitO$3) 経験的ガイドラインの欠如。
G_textstack$と呼ばれる深い積み重ね演算子は、トレーニングにおいて顕著な加速を示し、損失が減少し、全体的な性能が向上することを示した。
論文 参考訳(メタデータ) (2024-05-24T08:00:00Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Retrieval meets Long Context Large Language Models [59.431200671427064]
大規模言語モデル(LLM)のコンテキストウィンドウの拡張が最近人気を集めている。
Retrieval-augmentation対ロングコンテキストウィンドウ。
両方の方法を組み合わせることで、両方の世界を最大限に活用できますか?
我々の最良モデルである32Kコンテキストウィンドウ付きLlama2-70Bは、9つの長いコンテキストタスクの平均スコアにおいて、GPT-3.5-turbo-16kとDavinci003より優れています。
論文 参考訳(メタデータ) (2023-10-04T17:59:41Z) - Joint Prompt Optimization of Stacked LLMs using Variational Inference [66.04409787899583]
大規模言語モデル(LLM)は、列上の分布への計算マッピングシーケンスの原子単位と見なすことができる。
そのような2つのレイヤを積み重ねて1つのレイヤの出力を次のレイヤに供給することで、Deep Language Network(DLN)を得る。
DLN-2は単一層よりも高い性能に到達できることを示し、GPT-4に匹敵する性能に達することを約束する。
論文 参考訳(メタデータ) (2023-06-21T18:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。