Quantum erasure based on phase structure
- URL: http://arxiv.org/abs/2406.04358v1
- Date: Sat, 18 May 2024 06:20:13 GMT
- Title: Quantum erasure based on phase structure
- Authors: Ye Yang, Chengyuan Wang, Yun Chen, Jianyi Xv, Xin Yang, Jinwen Wang, Shuwei Qiu, Hong Gao, Fuli Li,
- Abstract summary: We introduce a theoretical framework for quantum erasure that focusses on the phase structure and demonstrate it experimentally.
We employ a Mach-Zehnder interferometer (MZI) where a first-order spiral phase plate (SPP) is integrated into one of its arms.
- Score: 9.313260008681723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum eraser effect exemplifies the distinct properties of quantum mechanics that challenge classical intuition and expose the wave-particle duality of light. This effect has been extensively explored in various experiments; most of these investigations use polarisation to distinguish which path information, and less attention has been paid to the phase structure which is related wavefront of photon. In this study, we introduce a theoretical framework for quantum erasure that focusses on the phase structure and demonstrate it experimentally. In this experiment, we employ a Mach-Zehnder interferometer (MZI) where a first-order spiral phase plate (SPP) is integrated into one of its arms. This setup applied orbital angular momentum (OAM) to the photons and established predetermined which-way information. Consequently, the photon demonstrates its particle characteristics, with absence of interference at the MZI's output ports. Utilizing an additional SPP to erase the phase structure from the output photon results in pronounced interference patterns, observable in a post-measurement scenario. This result allows us to include the structure information of the equiphase plane of the light field in quantum erasure. The results challenge the traditional cause-effect relationship in classical physics, given that the subsequent choice of the SPP adheres to a space-like separation.
Related papers
- Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation [0.0]
The Hong-Ou-Mandel (HOM) effect relates to the two-photon intensity correlation on a beam splitter, resulting in a nonclassical photon-bunching phenomenon.
Here, a coherence version of the HOM effect is proposed and analyzed to understand the fundamental physics of the anticorrelation and entanglement.
arXiv Detail & Related papers (2022-04-04T23:55:22Z) - Coherence interpretation of the delayed-choice quantum eraser [12.507208769851653]
We experimentally demonstrate the violation of the cause-effect relation using coherent photons for the quantum eraser.
The observed quantum eraser is coherently interpreted to seek the origin of the cause-effect violation.
arXiv Detail & Related papers (2022-02-13T00:28:22Z) - Controlling wave-particle duality with quantum entanglement [2.7117534879811878]
We take a conceptual step forward and control the wave-particle property of single photons with quantum entanglement.
We experimentally test the complementarity principle in a scenario in which the setting of the interferometer is not defined.
arXiv Detail & Related papers (2021-12-22T04:08:07Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Revisiting self-interference in Young double-slit experiments [0.0]
Single photon self-interference has been intensively studied over the last several decades in both quantum and classical regimes.
This understanding sheds light on the fundamental physics of quantum features between bipartite systems.
arXiv Detail & Related papers (2021-04-16T10:02:44Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.