論文の概要: Large Language Model Confidence Estimation via Black-Box Access
- arxiv url: http://arxiv.org/abs/2406.04370v1
- Date: Sat, 1 Jun 2024 02:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 13:55:28.421960
- Title: Large Language Model Confidence Estimation via Black-Box Access
- Title(参考訳): ブラックボックスアクセスによる大規模言語モデル信頼度推定
- Authors: Tejaswini Pedapati, Amit Dhurandhar, Soumya Ghosh, Soham Dan, Prasanna Sattigeri,
- Abstract要約: 大規模言語モデル(LLM)の応答に対する信頼度をブラックボックスやクエリアクセスで推定する問題について検討する。
そこで我々は,新しい特徴を設計し,信頼度を推定するために(解釈可能な)モデルを訓練する,シンプルでロジスティックなフレームワークを提案する。
我々は,本フレームワークがFlan-ul2, llama-13b, Mistral-7bの信頼度推定に有効であることを実証的に実証した。
- 参考スコア(独自算出の注目度): 30.490207799344333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of flan-ul2, llama-13b and mistral-7b with it consistently outperforming existing black-box confidence estimation approaches on benchmark datasets such as TriviaQA, SQuAD, CoQA and Natural Questions by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
- Abstract(参考訳): モデルの応答の不確実性や信頼性を推定することは、応答だけでなく、モデル全体の信頼を評価する上でも重要である。
本稿では,大規模言語モデル(LLM)の応答に対する信頼度をブラックボックスやクエリアクセスで推定する問題について検討する。
そこで我々は,新しい特徴を設計し,これらの特徴に対する(解釈可能な)モデル(つまりロジスティック回帰)を訓練し,信頼性を推定する,シンプルで拡張可能なフレームワークを提案する。
筆者らの単純なフレームワークは,TriviaQA,SQuAD,CoQA,Natural Questionsなどのベンチマークデータセットにおいて,Flan-ul2, llama-13b, Mistral-7bの信頼度を10\%以上(AUROCの場合)で一貫したブラックボックス信頼度推定手法で推定する上で有効であることを示す。
さらに、我々の解釈可能なアプローチは、信頼の予測可能な機能に関する洞察を与え、あるLLMのために構築された信頼モデルが与えられたデータセット上でゼロショットを一般化する興味深い、有用な発見につながります。
関連論文リスト
- On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - Calibrating the Confidence of Large Language Models by Eliciting Fidelity [52.47397325111864]
RLHFのようなテクニックで最適化された大規模な言語モデルは、有用で無害な点において優れた整合性を実現している。
調整後、これらの言語モデルはしばしば過剰な自信を示し、表現された自信は正確さの度合いで正確に校正しない。
本稿では,言語モデルの信頼度を推定するプラグイン・アンド・プレイ手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:36:12Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Uncertainty-Aware Evaluation for Vision-Language Models [0.0]
現在の評価手法は重要な要素である不確実性を見落としている。
精度の高いモデルも高い不確実性を持つ可能性があることを示す。
また, 実験結果から, モデルの不確かさと言語モデル部分との相関が明らかとなった。
論文 参考訳(メタデータ) (2024-02-22T10:04:17Z) - How Easy is It to Fool Your Multimodal LLMs? An Empirical Analysis on Deceptive Prompts [54.07541591018305]
提案するMAD-Benchは,既存のオブジェクト,オブジェクト数,空間関係などの5つのカテゴリに分割した1000の試験サンプルを含むベンチマークである。
我々は,GPT-4v,Reka,Gemini-Proから,LLaVA-NeXTやMiniCPM-Llama3といったオープンソースモデルに至るまで,一般的なMLLMを包括的に分析する。
GPT-4oはMAD-Bench上で82.82%の精度を達成するが、実験中の他のモデルの精度は9%から50%である。
論文 参考訳(メタデータ) (2024-02-20T18:31:27Z) - Llamas Know What GPTs Don't Show: Surrogate Models for Confidence
Estimation [70.27452774899189]
大規模言語モデル(LLM)は、ユーザを誤解させるのではなく、不正な例に対して低い信頼を示さなければならない。
2023年11月現在、最先端のLLMはこれらの確率へのアクセスを提供していない。
言語的信頼度と代理モデル確率を構成する最良の方法は、12データセットすべてに対して最先端の信頼度推定を与える。
論文 参考訳(メタデータ) (2023-11-15T11:27:44Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
この研究は信頼性を一般化可能性、公平性、校正性、事実性という4つの側面に分解する。
GPT-3はこれらすべての面において,より小型の教師付きモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-17T14:52:39Z) - Plex: Towards Reliability using Pretrained Large Model Extensions [69.13326436826227]
我々は,視覚と言語モダリティのための事前訓練された大規模モデル拡張であるViT-PlexとT5-Plexを開発した。
Plexは信頼性タスク間の最先端性を大幅に改善し、従来のプロトコルを単純化する。
最大1Bパラメータまでのモデルサイズに対するスケーリング効果と,最大4B例までのデータセットサイズを事前トレーニングした。
論文 参考訳(メタデータ) (2022-07-15T11:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。