論文の概要: Large Language Model Confidence Estimation via Black-Box Access
- arxiv url: http://arxiv.org/abs/2406.04370v2
- Date: Wed, 02 Oct 2024 12:49:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:18:46.415562
- Title: Large Language Model Confidence Estimation via Black-Box Access
- Title(参考訳): ブラックボックスアクセスによる大規模言語モデル信頼度推定
- Authors: Tejaswini Pedapati, Amit Dhurandhar, Soumya Ghosh, Soham Dan, Prasanna Sattigeri,
- Abstract要約: そこで我々は,新しい特徴を設計し,信頼度を推定するために(解釈可能な)モデルを訓練する,シンプルなフレームワークを提案する。
我々は,Flan-ul2,-13b, Mistral-7bの4つのベンチマークQ&Aタスクに対する信頼度を推定する上で,我々のフレームワークが有効であることを示す。
私たちの解釈可能なアプローチは、信頼の予測可能な機能に関する洞察を与え、興味深く有用な発見につながります。
- 参考スコア(独自算出の注目度): 30.490207799344333
- License:
- Abstract: Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b and Mistral-7b on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
- Abstract(参考訳): モデルの応答の不確実性や信頼性を推定することは、応答だけでなく、モデル全体の信頼を評価する上でも重要である。
本稿では,大規模言語モデル(LLM)の応答に対する信頼度をブラックボックスやクエリアクセスで推定する問題について検討する。
そこで我々は,新しい特徴を設計し,これらの特徴に対する(解釈可能な)モデル(つまりロジスティック回帰)を訓練し,信頼性を推定する,シンプルで拡張可能なフレームワークを提案する。
我々は,Flan-ul2,Llama-13b,Mistral-7bの4つのベンチマークQ&Aタスク,およびPegasus-large,BART-largeの2つのベンチマーク要約タスクに対する信頼度を推定するのに有効な簡単なフレームワークを実証的に示す。
さらに、我々の解釈可能なアプローチは、信頼の予測可能な機能に関する洞察を与え、あるLLMのために構築された信頼モデルが与えられたデータセット上でゼロショットを一般化する興味深い、有用な発見につながります。
関連論文リスト
- Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
本稿では,信頼度推定モデルを構築するための新しい手法を提案する。
重み付きグラフを用いて、質問に対する大きな言語モデルの応答の一貫性を表現します。
次に、正しい応答の確率を推定するためにグラフニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2024-11-03T20:36:44Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - Calibrating the Confidence of Large Language Models by Eliciting Fidelity [52.47397325111864]
RLHFのようなテクニックで最適化された大規模な言語モデルは、有用で無害な点において優れた整合性を実現している。
調整後、これらの言語モデルはしばしば過剰な自信を示し、表現された自信は正確さの度合いで正確に校正しない。
本稿では,言語モデルの信頼度を推定するプラグイン・アンド・プレイ手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:36:12Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Llamas Know What GPTs Don't Show: Surrogate Models for Confidence
Estimation [70.27452774899189]
大規模言語モデル(LLM)は、ユーザを誤解させるのではなく、不正な例に対して低い信頼を示さなければならない。
2023年11月現在、最先端のLLMはこれらの確率へのアクセスを提供していない。
言語的信頼度と代理モデル確率を構成する最良の方法は、12データセットすべてに対して最先端の信頼度推定を与える。
論文 参考訳(メタデータ) (2023-11-15T11:27:44Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Plex: Towards Reliability using Pretrained Large Model Extensions [69.13326436826227]
我々は,視覚と言語モダリティのための事前訓練された大規模モデル拡張であるViT-PlexとT5-Plexを開発した。
Plexは信頼性タスク間の最先端性を大幅に改善し、従来のプロトコルを単純化する。
最大1Bパラメータまでのモデルサイズに対するスケーリング効果と,最大4B例までのデータセットサイズを事前トレーニングした。
論文 参考訳(メタデータ) (2022-07-15T11:39:37Z) - A Survey on Uncertainty Toolkits for Deep Learning [3.113304966059062]
ディープラーニング(DL)における不確実性推定のためのツールキットに関する第1回調査について述べる。
モデリングおよび評価能力に関する11のツールキットについて検討する。
最初の2つは、それぞれのフレームワークに大きな柔軟性とシームレスな統合を提供するが、最後の2つは、より大きな方法論的スコープを持っている。
論文 参考訳(メタデータ) (2022-05-02T17:23:06Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。