論文の概要: Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN
- arxiv url: http://arxiv.org/abs/2406.04456v1
- Date: Thu, 6 Jun 2024 19:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 18:17:07.897993
- Title: Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN
- Title(参考訳): GNNを用いたセルフリーマスMIMOのための最適線形プリコーディングの学習
- Authors: Benjamin Parlier, Lou Salaün, Hong Yang,
- Abstract要約: 実用的なシステムで要求される1~2ミリ秒の時間予算で計算できるグラフニューラルネットワーク(GNN)を開発した。
本稿では,AP と UE の数が異なる様々なシナリオにおいて,ほぼ最適なスペクトル効率を実現することを示す。
- 参考スコア(独自算出の注目度): 15.271970287767164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a graph neural network (GNN) to compute, within a time budget of 1 to 2 milliseconds required by practical systems, the optimal linear precoder (OLP) maximizing the minimal downlink user data rate for a Cell-Free Massive MIMO system - a key 6G wireless technology. The state-of-the-art method is a bisection search on second order cone programming feasibility test (B-SOCP) which is a magnitude too slow for practical systems. Our approach relies on representing OLP as a node-level prediction task on a graph. We construct a graph that accurately captures the interdependence relation between access points (APs) and user equipments (UEs), and the permutation equivariance of the Max-Min problem. Our neural network, named OLP-GNN, is trained on data obtained by B-SOCP. We tailor the OLP-GNN size, together with several artful data preprocessing and postprocessing methods to meet the runtime requirement. We show by extensive simulations that it achieves near optimal spectral efficiency in a range of scenarios with different number of APs and UEs, and for both line-of-sight and non-line-of-sight radio propagation environments.
- Abstract(参考訳): 実用システムで要求される1~2ミリ秒の時間予算で計算可能なグラフニューラルネットワーク(GNN)を開発した。この最適化線形プリコーダ(OLP)は,Cell-Free Massive MIMOシステム(キー6G無線技術)の最小ダウンリンクユーザデータレートを最大化する。
State-of-the-art法は、2次コーンプログラミング実現可能性テスト(B-SOCP)の2項探索であり、実用システムには大きすぎる。
提案手法は,ノードレベルの予測タスクとして OLP をグラフ上で表現することに依存する。
我々は、アクセスポイント(AP)とユーザ機器(UE)の相互依存関係を正確に把握するグラフを構築し、Max-Min問題の変分同値を構築する。
我々のニューラルネットワークは、OLP-GNNと呼ばれ、B-SOCPが取得したデータに基づいて訓練されている。
我々は、OLP-GNNのサイズを調整し、実行時要件を満たすために、いくつかの巧妙なデータ前処理と後処理手法を併用する。
我々は,AP と UE の異なる様々なシナリオにおいて,ほぼ最適なスペクトル効率を達成できることを示す。
関連論文リスト
- PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming [36.13745722329505]
本稿では,大規模線形計画問題の解法として PDHG-Net と呼ばれる FOM-Unrolled Neural Network (NN) を提案する。
提案手法は,大規模LP問題に対するFOMと比較して,最大3ドル以上の高速化を実現することができることを示す。
論文 参考訳(メタデータ) (2024-06-04T02:39:42Z) - Hybrid-Task Meta-Learning: A Graph Neural Network Approach for Scalable and Transferable Bandwidth Allocation [46.342827102556896]
ユーザ数に応じてスケーラブルで,異なる通信シナリオに転送可能な,ディープラーニングベースの帯域割り当てポリシを開発する。
スケーラビリティをサポートするために、帯域割り当てポリシーはグラフニューラルネットワーク(GNN)によって表現される。
我々は,GNNの初期パラメータを異なる通信シナリオで学習するハイブリッドタスクメタ学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-23T04:25:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [65.65132884606072]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
チャネル推定とビームフォーミングは、周波数分割二重化(FDD)大規模マルチインプット多重出力(MIMO)システムにおいて重要な役割を果たす。
受信したアップリンクパイロットに応じて,基地局のビームフォーマを直接最適化する深層学習方式を提案する。
エンド・ツー・エンドの設計のスケーラビリティを向上させるために,ニューラルキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:26:14Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Device Sampling for Heterogeneous Federated Learning: Theory,
Algorithms, and Implementation [24.084053136210027]
グラフシーケンシャル畳み込みネットワーク(GCN)に基づくサンプリング手法を開発した。
提案手法は,全機器の5%以下をサンプリングしながら,訓練されたモデル精度と必要なリソース利用の両面で,fedl(federated learning)を実質的に上回っている。
論文 参考訳(メタデータ) (2021-01-04T05:59:50Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。