論文の概要: Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming
- arxiv url: http://arxiv.org/abs/2506.00247v1
- Date: Fri, 30 May 2025 21:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.167588
- Title: Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming
- Title(参考訳): 制約なし2値二次計画法の適用による畳み込みニューラルネットワークの性能解析
- Authors: Aasish Kumar Sharma, Sanjeeb Prashad Pandey, Julian M. Kunkel,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンとビッグデータ分析において重要であるが、大規模なデータセットでトレーニングされた場合には、かなりの計算リソースを必要とする。
CNNトレーニングを高速化するために,Unconstrained Binary Quadratic Programming (UBQP) と Gradient Descent (SGD) を組み合わせたハイブリッド最適化手法を提案する。
提案手法は, BP-CNNベースラインの10-15%の精度向上を実現し, 同様の実行時間を維持する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional Neural Networks (CNNs) are pivotal in computer vision and Big Data analytics but demand significant computational resources when trained on large-scale datasets. Conventional training via back-propagation (BP) with losses like Mean Squared Error or Cross-Entropy often requires extensive iterations and may converge sub-optimally. Quantum computing offers a promising alternative by leveraging superposition, tunneling, and entanglement to search complex optimization landscapes more efficiently. In this work, we propose a hybrid optimization method that combines an Unconstrained Binary Quadratic Programming (UBQP) formulation with Stochastic Gradient Descent (SGD) to accelerate CNN training. Evaluated on the MNIST dataset, our approach achieves a 10--15\% accuracy improvement over a standard BP-CNN baseline while maintaining similar execution times. These results illustrate the potential of hybrid quantum-classical techniques in High-Performance Computing (HPC) environments for Big Data and Deep Learning. Fully realizing these benefits, however, requires a careful alignment of algorithmic structures with underlying quantum mechanisms.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンとビッグデータ分析において重要であるが、大規模なデータセットでトレーニングされた場合には、かなりの計算リソースを必要とする。
Mean Squared ErrorやCross-Entropyのような損失を伴うバックプロパゲーション(BP)による従来型のトレーニングは、大規模なイテレーションを必要とし、サブ最適に収束する可能性がある。
量子コンピューティングは、より効率的に複雑な最適化ランドスケープを探索するために重ね合わせ、トンネル、絡み合いを活用することで、有望な代替手段を提供する。
本研究では,Unconstrained Binary Quadratic Programming (UBQP)とStochastic Gradient Descent (SGD)を組み合わせたハイブリッド最適化手法を提案する。
提案手法は,MNISTデータセットに基づいて,標準BP-CNNベースラインよりも10~15倍の精度向上を実現し,同様の実行時間を維持する。
これらの結果は、ビッグデータとディープラーニングのためのハイパフォーマンスコンピューティング(HPC)環境におけるハイブリッド量子古典的手法の可能性を示している。
しかし、これらの利点を完全に実現するには、基礎となる量子機構とアルゴリズム構造を慎重にアライメントする必要がある。
関連論文リスト
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
本稿では,DeepONetのトレーニングに採用するランダムサンプリング手法を提案する。
従来のトレーニングアプローチと比較して、テスト全体のエラーを同等あるいは低いものにしながら、トレーニング時間の大幅な削減を実証する。
この結果から,訓練中のトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性とロバスト性を高めることが示唆された。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
我々は、最適輸送(OT)の概念に基づく偏微分方程式(PDE)の解法として、よく知られた物理情報ニューラルネットワーク(PINN)の改良戦略を提案する。
PINNの解法は、完全接続された病理のスペクトルバイアス、不安定な勾配、収束と精度の難しさなど、多くの問題に悩まされている。
本稿では,既存の PINN フレームワークを補完する OT-based sample を用いて,Fokker-Planck-Kolmogorov Equation (FPKE) を解くための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-05-26T02:51:20Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。