NATURAL PLAN: Benchmarking LLMs on Natural Language Planning
- URL: http://arxiv.org/abs/2406.04520v1
- Date: Thu, 6 Jun 2024 21:27:35 GMT
- Title: NATURAL PLAN: Benchmarking LLMs on Natural Language Planning
- Authors: Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
- Abstract summary: We introduce NATURAL PLAN, a realistic planning benchmark in natural language containing 3 key tasks: Trip Planning, Meeting Planning, and Calendar Scheduling.
We focus our evaluation on the planning capabilities of LLMs with full information on the task, by providing outputs from tools such as Google Flights, Google Maps, and Google Calendar as contexts to the models.
- Score: 109.73382347588417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce NATURAL PLAN, a realistic planning benchmark in natural language containing 3 key tasks: Trip Planning, Meeting Planning, and Calendar Scheduling. We focus our evaluation on the planning capabilities of LLMs with full information on the task, by providing outputs from tools such as Google Flights, Google Maps, and Google Calendar as contexts to the models. This eliminates the need for a tool-use environment for evaluating LLMs on Planning. We observe that NATURAL PLAN is a challenging benchmark for state of the art models. For example, in Trip Planning, GPT-4 and Gemini 1.5 Pro could only achieve 31.1% and 34.8% solve rate respectively. We find that model performance drops drastically as the complexity of the problem increases: all models perform below 5% when there are 10 cities, highlighting a significant gap in planning in natural language for SoTA LLMs. We also conduct extensive ablation studies on NATURAL PLAN to further shed light on the (in)effectiveness of approaches such as self-correction, few-shot generalization, and in-context planning with long-contexts on improving LLM planning.
Related papers
- Smart Language Agents in Real-World Planning [0.0]
We seek to improve the travel-planning capability of Large Language Models (LLMs)
We propose a semi-automated prompt generation framework which combines the LLM-automated prompt and "human-in-the-loop"
Our result shows that LLM automated prompt has its limitations and "human-in-the-loop" greatly improves the performance by $139%$ with one single iteration.
arXiv Detail & Related papers (2024-07-29T03:00:30Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Robust Planning with LLM-Modulo Framework: Case Study in Travel Planning [19.79128776490271]
We present a framework that enhances the integration of Large Language Models into diverse planning and reasoning activities.
We are using the Travel Planning benchmark by the OSU NLP group, a benchmark for evaluating the performance of LLMs in producing valid itineraries.
Our operationalization of the LLM-Modulo framework for TravelPlanning domain provides a remarkable improvement, enhancing baseline performances by 4.6x for GPT4-Turbo and even more for older models like GPT3.5-Turbo from 0% to 5%.
arXiv Detail & Related papers (2024-05-31T05:23:35Z) - AutoPlanBench: Automatically generating benchmarks for LLM planners from
PDDL [52.005042190810116]
We present AutoPlanBench, a novel method for automatically converting planning benchmarks written in PDDL into textual descriptions.
We show that while the best LLM planners do well on some planning tasks, others remain out of reach of current methods.
arXiv Detail & Related papers (2023-11-16T11:55:27Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z) - LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models [27.318186938382233]
This study focuses on using large language models (LLMs) as a planner for embodied agents.
We propose a novel method, LLM-Planner, that harnesses the power of large language models to do few-shot planning.
arXiv Detail & Related papers (2022-12-08T05:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.