論文の概要: Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning
- arxiv url: http://arxiv.org/abs/2406.04575v1
- Date: Fri, 7 Jun 2024 01:30:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 15:48:53.524857
- Title: Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning
- Title(参考訳): 多モード潜在力学モデルと深部強化学習による地熱炭素貯蔵の最適化
- Authors: Zhongzheng Wang, Yuntian Chen, Guodong Chen, Dongxiao Zhang,
- Abstract要約: 本稿では,高速フロー予測とGCSの制御最適化のためのディープラーニングフレームワークであるMLDモデルを紹介する。
既存のモデルとは異なり、MDDは多様な入力モダリティをサポートし、包括的なデータインタラクションを可能にする。
この手法は従来の手法よりも優れており、計算資源を60%以上削減し、最も高いNPVを達成する。
- 参考スコア(独自算出の注目度): 1.8549313085249324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximizing storage performance in geological carbon storage (GCS) is crucial for commercial deployment, but traditional optimization demands resource-intensive simulations, posing computational challenges. This study introduces the multimodal latent dynamic (MLD) model, a deep learning framework for fast flow prediction and well control optimization in GCS. The MLD model includes a representation module for compressed latent representations, a transition module for system state evolution, and a prediction module for flow responses. A novel training strategy combining regression loss and joint-embedding consistency loss enhances temporal consistency and multi-step prediction accuracy. Unlike existing models, the MLD supports diverse input modalities, allowing comprehensive data interactions. The MLD model, resembling a Markov decision process (MDP), can train deep reinforcement learning agents, specifically using the soft actor-critic (SAC) algorithm, to maximize net present value (NPV) through continuous interactions. The approach outperforms traditional methods, achieving the highest NPV while reducing computational resources by over 60%. It also demonstrates strong generalization performance, providing improved decisions for new scenarios based on knowledge from previous ones.
- Abstract(参考訳): 地質炭素貯蔵(GCS)における貯蔵性能の最大化は商業的展開に不可欠であるが、従来の最適化では資源集約的なシミュレーションを必要とし、計算上の課題を提起している。
本稿では,高速フロー予測とGCSの制御最適化のためのディープラーニングフレームワークであるMLDモデルを紹介する。
MLDモデルは、圧縮された潜在表現のための表現モジュール、システム状態の進化のための遷移モジュール、フロー応答のための予測モジュールを含む。
回帰損失と結合埋め込み一貫性損失を組み合わせた新しいトレーニング戦略は、時間的一貫性と多段階予測精度を高める。
既存のモデルとは異なり、MDDは多様な入力モダリティをサポートし、包括的なデータインタラクションを可能にする。
MLDモデルはマルコフ決定プロセス(MDP)に類似しており、特にソフトアクター・クリティック(SAC)アルゴリズムを用いて深層強化学習エージェントを訓練し、連続的な相互作用を通じて純現在値(NPV)を最大化する。
この手法は従来の手法よりも優れており、計算資源を60%以上削減し、最も高いNPVを達成する。
また、強力な一般化性能を示し、以前の知識に基づいた新しいシナリオの意思決定を改善する。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Self-learning sparse PCA for multimode process monitoring [2.8102838347038617]
本稿では,逐次モードの自己学習能力を有するスパース主成分分析アルゴリズムを提案する。
従来のマルチモードモニタリング方法とは異なり、モニタリングモデルは現在のモデルと新しいモードが到着したときに新しいデータに基づいて更新される。
論文 参考訳(メタデータ) (2021-08-07T13:50:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
マルコフ決定過程としてのAMRの新規な定式化を提案し,シミュレーションから直接改良政策を訓練するために深部強化学習を適用した。
これらのポリシーアーキテクチャのモデルサイズはメッシュサイズに依存しないため、任意に大きく複雑なシミュレーションにスケールします。
論文 参考訳(メタデータ) (2021-03-01T22:55:48Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z) - XLVIN: eXecuted Latent Value Iteration Nets [17.535799331279417]
VIN(Value Iteration Networks)は、深い強化学習に計画アルゴリズムを組み込む一般的な手法として登場した。
提案するXLVINは, 対照的な自己教師付き学習, グラフ表現学習, ニューラルアルゴリズム推論にまたがる最近の発展を総合して提案する。
論文 参考訳(メタデータ) (2020-10-25T16:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。