Federated Representation Learning in the Under-Parameterized Regime
- URL: http://arxiv.org/abs/2406.04596v4
- Date: Wed, 17 Jul 2024 22:11:08 GMT
- Title: Federated Representation Learning in the Under-Parameterized Regime
- Authors: Renpu Liu, Cong Shen, Jing Yang,
- Abstract summary: Federated representation learning (FRL) is a popular personalized federated learning (FL) framework where clients work together to train a common representation while retaining their personalized heads.
We propose a novel FRL algorithm FLUTE, and theoretically characterize its sample complexity and convergence rate for linear models.
Experimental results demonstrate that FLUTE outperforms state-of-the-art FRL solutions in both synthetic and real-world tasks.
- Score: 10.551397415936309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated representation learning (FRL) is a popular personalized federated learning (FL) framework where clients work together to train a common representation while retaining their personalized heads. Existing studies, however, largely focus on the over-parameterized regime. In this paper, we make the initial efforts to investigate FRL in the under-parameterized regime, where the FL model is insufficient to express the variations in all ground-truth models. We propose a novel FRL algorithm FLUTE, and theoretically characterize its sample complexity and convergence rate for linear models in the under-parameterized regime. To the best of our knowledge, this is the first FRL algorithm with provable performance guarantees in this regime. FLUTE features a data-independent random initialization and a carefully designed objective function that aids the distillation of subspace spanned by the global optimal representation from the misaligned local representations. On the technical side, we bridge low-rank matrix approximation techniques with the FL analysis, which may be of broad interest. We also extend FLUTE beyond linear representations. Experimental results demonstrate that FLUTE outperforms state-of-the-art FRL solutions in both synthetic and real-world tasks.
Related papers
- On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks.
Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly.
This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time.
arXiv Detail & Related papers (2023-10-12T19:07:58Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Single-shot Hyper-parameter Optimization for Federated Learning: A
General Algorithm & Analysis [20.98323380319439]
We introduce Federated Loss SuRface Aggregation (FLoRA), a general FL-HPO solution framework.
FLoRA enables single-shot FL-HPO: identifying a single set of good hyper- parameters that are subsequently used in a single FL training.
Our empirical evaluation of FLoRA for multiple ML algorithms on seven OpenML datasets demonstrates significant model accuracy improvements over the considered baseline.
arXiv Detail & Related papers (2022-02-16T21:14:34Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
Federated learning (FL) is a privacy-preserving distributed machine learning paradigm.
We propose a novel FRL algorithm that effectively incorporates model-based RL and ensemble knowledge distillation into FL for the first time.
Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with the environment.
arXiv Detail & Related papers (2021-09-12T16:19:10Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data.
Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks.
We introduce FedProto, which computes client deviations using margins of representations learned on distributed data.
arXiv Detail & Related papers (2021-05-19T08:29:12Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets.
We propose a new model-matching-based problem formulation for hybrid FL.
We then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data.
arXiv Detail & Related papers (2020-12-22T23:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.