論文の概要: UCDNet: Multi-UAV Collaborative 3D Object Detection Network by Reliable Feature Mapping
- arxiv url: http://arxiv.org/abs/2406.04648v1
- Date: Fri, 7 Jun 2024 05:27:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 15:29:23.636055
- Title: UCDNet: Multi-UAV Collaborative 3D Object Detection Network by Reliable Feature Mapping
- Title(参考訳): UCDNet:信頼性のある特徴マッピングによる複数UAV協調3次元物体検出ネットワーク
- Authors: Pengju Tian, Peirui Cheng, Yuchao Wang, Zhechao Wang, Zhirui Wang, Menglong Yan, Xue Yang, Xian Sun,
- Abstract要約: マルチUAVコラボレーティブな3Dオブジェクト検出は複雑な環境を知覚し理解することができる。
カメラによる複数UAV協調3Dオブジェクト検出のパラダイムであるUCDNetを提案する。
本手法は, ベースラインに比べて4.7%, 10%mAPの増加を示した。
- 参考スコア(独自算出の注目度): 14.401624713578737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-UAV collaborative 3D object detection can perceive and comprehend complex environments by integrating complementary information, with applications encompassing traffic monitoring, delivery services and agricultural management. However, the extremely broad observations in aerial remote sensing and significant perspective differences across multiple UAVs make it challenging to achieve precise and consistent feature mapping from 2D images to 3D space in multi-UAV collaborative 3D object detection paradigm. To address the problem, we propose an unparalleled camera-based multi-UAV collaborative 3D object detection paradigm called UCDNet. Specifically, the depth information from the UAVs to the ground is explicitly utilized as a strong prior to provide a reference for more accurate and generalizable feature mapping. Additionally, we design a homologous points geometric consistency loss as an auxiliary self-supervision, which directly influences the feature mapping module, thereby strengthening the global consistency of multi-view perception. Experiments on AeroCollab3D and CoPerception-UAVs datasets show our method increases 4.7% and 10% mAP respectively compared to the baseline, which demonstrates the superiority of UCDNet.
- Abstract(参考訳): マルチUAV協調型3Dオブジェクト検出は、交通監視、配送サービス、農業管理を含むアプリケーションと相補的な情報を統合することで、複雑な環境を知覚し、理解することができる。
しかし、空中リモートセンシングにおける極めて広範囲な観測と、複数のUAV間での顕著な視点差により、2D画像から3D空間への正確な一貫した特徴マッピングをマルチUAV協調3Dオブジェクト検出パラダイムで達成することは困難である。
この問題に対処するため,UCDNetと呼ばれるカメラによる複数UAV協調3Dオブジェクト検出パラダイムを提案する。
具体的には、UAVから地上への深度情報は、より正確で一般化可能な特徴マッピングのための参照を提供するために、強みとして明示的に利用される。
さらに,同値点の幾何的整合性損失を補助的な自己スーパービジョンとして設計し,特徴写像モジュールに直接影響し,多視点知覚のグローバルな整合性を高める。
AeroCollab3DとCoPerception-UAVsデータセットによる実験により,本手法はベースラインと比較してそれぞれ4.7%,10%mAP増加し,UCDNetの優位性を示した。
関連論文リスト
- UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles [12.278437831053985]
無人航空機(UAV)は、航空写真、監視、農業など多くの用途で使用されている。
UAVアプリケーションの既存のベンチマークは、主に従来の2D認識タスクのために設計されている。
UAV3Dは1000のシーンで構成され、それぞれに20のフレームと完全な注釈付き3Dバウンディングボックスがある。
論文 参考訳(メタデータ) (2024-10-14T22:24:11Z) - RS-DFM: A Remote Sensing Distributed Foundation Model for Diverse Downstream Tasks [11.681342476516267]
汎用情報マッピングとインタラクションに基づく分散センシング基礎モデル(RS-DFM)を提案する。
このモデルは、複数のプラットフォームにわたるオンライン協調認識と、さまざまな下流タスクを実現することができる。
本稿では、高周波・低周波特徴情報を分離するデュアルブランチ情報圧縮モジュールを提案する。
論文 参考訳(メタデータ) (2024-06-11T07:46:47Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
マルチカメラ3Dオブジェクト検出(MC3D-Det)は,鳥眼ビュー(BEV)の出現によって注目されている。
本研究では,3次元検出と2次元カメラ平面との整合性を両立させ,一貫した高精度な検出を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T15:31:28Z) - SCA-PVNet: Self-and-Cross Attention Based Aggregation of Point Cloud and
Multi-View for 3D Object Retrieval [8.74845857766369]
大規模データセットを用いた多モード3Dオブジェクト検索はめったに行われない。
本稿では,3次元オブジェクト検索のための点群と多視点画像の自己・横断的アグリゲーションを提案する。
論文 参考訳(メタデータ) (2023-07-20T05:46:32Z) - Multi-Projection Fusion and Refinement Network for Salient Object
Detection in 360{\deg} Omnidirectional Image [141.10227079090419]
我々は,360度全方位画像中の有向物体を検出するために,MPFR-Net(Multi-Projection Fusion and Refinement Network)を提案する。
MPFR-Netは、等角射影像と対応する4つの立方体展開像を入力として使用する。
2つの全方位データセットの実験結果から,提案手法は定性的かつ定量的に,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-12-23T14:50:40Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Multi-Task Multi-Sensor Fusion for 3D Object Detection [93.68864606959251]
本稿では,2次元および3次元物体検出と地盤推定と奥行き完了を理由とするエンドツーエンド学習可能なアーキテクチャを提案する。
実験の結果,これらのタスクは相補的であり,様々なレベルで情報を融合することで,ネットワークがよりよい表現を学ぶのに役立つことがわかった。
論文 参考訳(メタデータ) (2020-12-22T22:49:15Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3Dマルチオブジェクトトラッキングは、自律ナビゲーションにおいて重要な役割を果たす。
多くのアプローチでは、トラッキングのための2次元RGBシーケンス内のオブジェクトを検出するが、これは3次元空間内のオブジェクトをローカライズする際の信頼性の欠如である。
本稿では,隣接フレーム内の各オブジェクト間の相関をよりよく活用するために,RelationConvという新しい畳み込み演算を提案する。
論文 参考訳(メタデータ) (2020-11-25T16:14:40Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。