論文の概要: Dynamical mixture modeling with fast, automatic determination of Markov chains
- arxiv url: http://arxiv.org/abs/2406.04653v1
- Date: Fri, 7 Jun 2024 05:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 15:19:38.536894
- Title: Dynamical mixture modeling with fast, automatic determination of Markov chains
- Title(参考訳): マルコフ鎖の高速自動決定による動的混合モデリング
- Authors: Christopher E. Miles, Robert J. Webber,
- Abstract要約: 変動EMは、高価なモデル比較や後続サンプリングなしに、各チェーンのマルコフ連鎖の数と力学を効率的に同定する。
この手法は、$tt Last.fm$音楽聴取、ウルトラマラソン実行、遺伝子発現に基づくシミュレーションおよび観測データセットを含む理論的解析と数値実験によって支持されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Markov state modeling has gained popularity in various scientific fields due to its ability to reduce complex time series data into transitions between a few states. Yet, current frameworks are limited by assuming a single Markov chain describes the data, and they suffer an inability to discern heterogeneities. As a solution, this paper proposes a variational expectation-maximization algorithm that identifies a mixture of Markov chains in a time-series data set. The method is agnostic to the definition of the Markov states, whether data-driven (e.g. by spectral clustering) or based on domain knowledge. Variational EM efficiently and organically identifies the number of Markov chains and dynamics of each chain without expensive model comparisons or posterior sampling. The approach is supported by a theoretical analysis and numerical experiments, including simulated and observational data sets based on ${\tt Last.fm}$ music listening, ultramarathon running, and gene expression. The results show the new algorithm is competitive with contemporary mixture modeling approaches and powerful in identifying meaningful heterogeneities in time series data.
- Abstract(参考訳): マルコフ状態モデリングは、複雑な時系列データを少数の状態間の遷移に還元する能力によって、様々な科学分野で人気を集めている。
しかし、現在のフレームワークは、データを記述する1つのマルコフ連鎖を仮定することで制限されており、不均一性を識別することができない。
そこで本研究では,時系列データセットにおけるマルコフ連鎖の混合を同定する変動予測最大化アルゴリズムを提案する。
この方法はマルコフ状態の定義とは無関係であり、データ駆動(例えばスペクトルクラスタリング)かドメイン知識に基づくかである。
変異EMは、高価なモデル比較や後部サンプリングを伴わずに、マルコフ鎖の数と各鎖のダイナミクスを効率よく有機的に同定する。
この手法は、${\tt Last.fm}$音楽聴取、ウルトラマラソン実行、遺伝子発現に基づくシミュレーションおよび観測データセットを含む理論的解析と数値実験によって支持されている。
その結果,このアルゴリズムは同時代の混合モデリング手法と競合し,時系列データにおける意味のある不均一性を識別する上で強力であることが示唆された。
関連論文リスト
- Discrete Markov Probabilistic Models [8.206838934494513]
離散マルコフ確率モデル(DMPM)は離散データ生成のための新しいアルゴリズムである。
時間反転過程の強度は古典的なスコア関数の離散的なアナログによって制御される。
この研究は理論の基礎と実践的応用を橋渡しし、効果的で理論的に基礎付けられた離散生成モデリングの開発を進めた。
論文 参考訳(メタデータ) (2025-02-11T20:36:23Z) - Mixture of Coupled HMMs for Robust Modeling of Multivariate Healthcare
Time Series [7.5986411724707095]
隠れマルコフモデル(M-CHMM)を結合した新しいモデルのクラスを提案する。
モデル学習を実現するために、CHMM内の潜伏変数のシーケンスをサンプリングする2つのアルゴリズムを導出する。
既存の推論手法と比較して,アルゴリズムは計算可能であり,混合性が向上し,推定精度が向上する。
論文 参考訳(メタデータ) (2023-11-14T02:55:37Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Information Theory Inspired Pattern Analysis for Time-series Data [60.86880787242563]
時系列データのパターンを識別・学習するために,情報理論に基づく特徴量を用いた高度に一般化可能な手法を提案する。
状態遷移を持つ応用では、シャノンのマルコフ鎖のエントロピー、マルコフ鎖のエントロピー率、マルコフ鎖のフォン・ノイマンエントロピーに基づいて特徴が展開される。
その結果,提案した情報理論に基づく特徴は,ベースラインモデルと比較して,リコール率,F1スコア,平均精度を最大23.01%向上させることがわかった。
論文 参考訳(メタデータ) (2023-02-22T21:09:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Autoencoder Based Iterative Modeling and Multivariate Time-Series
Subsequence Clustering Algorithm [0.0]
本稿では、過渡時系列データ(MTSD)における変化点の検出と対応する部分列の同定のためのアルゴリズムを提案する。
我々は、リカレントニューラルネットワーク(RNN)ベースのオートエンコーダ(AE)を用いて、入ってくるデータに基づいて反復的に訓練する。
同定されたサブシーケンスのモデルを保存し、繰り返しサブシーケンスの認識と高速オフラインクラスタリングに使用する。
論文 参考訳(メタデータ) (2022-09-09T09:59:56Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
論文 参考訳(メタデータ) (2022-05-18T09:03:00Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Comparative Analysis of the Hidden Markov Model and LSTM: A Simulative
Approach [0.0]
マルコフ仮説が満たされていない場合でも、隠れマルコフモデルがシーケンスデータを処理する効果的な方法であることを示す。
その結果,大量のラベル付きデータが利用できない場合,教師なしマルコフモデルでさえLSTMより優れていることがわかった。
論文 参考訳(メタデータ) (2020-08-09T22:13:10Z) - XEM: An Explainable-by-Design Ensemble Method for Multivariate Time
Series Classification [61.33695273474151]
マルチ変数時系列分類のためのeXplainable-by-design Ensemble法であるXEMを提案する。
XEMは、明示的なブースティング・バッグ・アプローチと暗黙的なディペンション・アンド・コンカ・アプローチを組み合わせた新しいハイブリッド・アンサンブル法に依存している。
評価の結果、XEM は、パブリック UEA データセット上で最先端の MTS 分類器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-07T17:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。