XctDiff: Reconstruction of CT Images with Consistent Anatomical Structures from a Single Radiographic Projection Image
- URL: http://arxiv.org/abs/2406.04679v2
- Date: Fri, 14 Jun 2024 00:41:33 GMT
- Title: XctDiff: Reconstruction of CT Images with Consistent Anatomical Structures from a Single Radiographic Projection Image
- Authors: Qingze Bai, Tiange Liu, Zhi Liu, Yubing Tong, Drew Torigian, Jayaram Udupa,
- Abstract summary: XctDiff is an algorithm framework for reconstructing CT from a single radiograph.
We first design a progressive feature extraction strategy that is able to extract robust 3D priors.
Then, we use the extracted prior information to guide the CT reconstruction in the latent space.
- Score: 4.169099546864143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present XctDiff, an algorithm framework for reconstructing CT from a single radiograph, which decomposes the reconstruction process into two easily controllable tasks: feature extraction and CT reconstruction. Specifically, we first design a progressive feature extraction strategy that is able to extract robust 3D priors from radiographs. Then, we use the extracted prior information to guide the CT reconstruction in the latent space. Moreover, we design a homogeneous spatial codebook to improve the reconstruction quality further. The experimental results show that our proposed method achieves state-of-the-art reconstruction performance and overcomes the blurring issue. We also apply XctDiff on self-supervised pre-training task. The effectiveness indicates that it has promising additional applications in medical image analysis. The code is available at:https://github.com/qingze-bai/XctDiff
Related papers
- Differentiable Gaussian Representation for Incomplete CT Reconstruction [20.390232991700977]
We propose a novel Gaussian Representation for Incomplete CT Reconstruction (GRCT) without the usage of any neural networks or full-dose CT data.
Our method can be applied to multiple views and angles without changing the architecture.
Experiments on multiple datasets and settings demonstrate significant improvements in reconstruction quality metrics and high efficiency.
arXiv Detail & Related papers (2024-11-07T16:32:29Z) - AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
Computed tomography (CT) reconstruction plays a crucial role in industrial nondestructive testing and medical diagnosis.
Sparse view CT reconstruction aims to reconstruct high-quality CT images while only using a small number of projections.
We introduce AC-IND, a self-supervised method based on Attenuation Coefficient Estimation and Implicit Neural Distribution.
arXiv Detail & Related papers (2024-09-11T10:34:41Z) - Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning [26.866131691476255]
Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement.
In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays.
arXiv Detail & Related papers (2024-08-19T06:34:01Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging.
Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images.
We propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF)
APRF can build the continuous representation between adjacent projection views via the spatial constraints.
arXiv Detail & Related papers (2023-07-11T14:04:12Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
iodine radiation in the imaging process induces irreversible injury.
Iterative models are proposed to alleviate the appeared artifacts in sparse-view CT images, but the cost is too expensive.
We propose textbfDual-textbfDomain textbfDuDoTrans to reconstruct CT image with both the enhanced and raw sinograms.
arXiv Detail & Related papers (2021-11-21T10:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.