論文の概要: Variational Flow Matching for Graph Generation
- arxiv url: http://arxiv.org/abs/2406.04843v1
- Date: Fri, 7 Jun 2024 11:16:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:20:58.758067
- Title: Variational Flow Matching for Graph Generation
- Title(参考訳): グラフ生成のための変分流マッチング
- Authors: Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, Jan-Willem van de Meent,
- Abstract要約: 分類データのフローマッチング手法であるCatFlowを開発した。
CatFlowは実装が容易で、計算効率が良く、グラフ生成タスクで強い結果が得られる。
- 参考スコア(独自算出の注目度): 42.3778673162256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a formulation of flow matching as variational inference, which we refer to as variational flow matching (VFM). Based on this formulation we develop CatFlow, a flow matching method for categorical data. CatFlow is easy to implement, computationally efficient, and achieves strong results on graph generation tasks. In VFM, the objective is to approximate the posterior probability path, which is a distribution over possible end points of a trajectory. We show that VFM admits both the CatFlow objective and the original flow matching objective as special cases. We also relate VFM to score-based models, in which the dynamics are stochastic rather than deterministic, and derive a bound on the model likelihood based on a reweighted VFM objective. We evaluate CatFlow on one abstract graph generation task and two molecular generation tasks. In all cases, CatFlow exceeds or matches performance of the current state-of-the-art models.
- Abstract(参考訳): 本稿では,フローマッチングを変分推論として定式化し,これを変分フローマッチング(VFM)と呼ぶ。
この定式化に基づいて,分類データのフローマッチング手法であるCatFlowを開発した。
CatFlowは実装が容易で、計算効率が良く、グラフ生成タスクで強い結果が得られる。
VFMでは、軌道の可能な端点上の分布である後続確率経路を近似することが目的である。
また,VFMはキャットフローの目的とフローマッチングの目的の両方を特殊事例として認めている。
また、VFMをスコアベースモデルに関連付け、力学は決定論的ではなく確率的であり、再重み付けされたVFMの目的に基づいてモデル確率の有界性を導出する。
1つの抽象グラフ生成タスクと2つの分子生成タスクでCatFlowを評価する。
いずれの場合も、CatFlowは現在の最先端モデルのパフォーマンスを上回るか、あるいは一致します。
関連論文リスト
- Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
本稿では,速度場の自己整合性を明示する新しいFM法であるConsistency Flow Matching(Consistency-FM)を紹介する。
予備実験により、一貫性FMは、一貫性モデルよりも4.4倍速く収束することにより、トレーニング効率を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-07-02T16:15:37Z) - Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
離散データのための新しいフローマッチングモデルであるFisher-Flowを紹介する。
Fisher-Flowは、離散データ上のカテゴリー分布を考慮し、明らかに幾何学的な視点を採っている。
Fisher-Flowにより誘導される勾配流は, 前方KLの発散を低減するのに最適であることを示す。
論文 参考訳(メタデータ) (2024-05-23T15:02:11Z) - PaddingFlow: Improving Normalizing Flows with Padding-Dimensional Noise [4.762593660623934]
パディングフロー(PaddingFlow)は,パディング次元雑音による正規化フローを改善する新しいデクエント化法である。
非条件密度推定の主ベンチマークで本手法の有効性を検証した。
この結果から,PaddingFlowはすべての実験において優れた性能を発揮できることがわかった。
論文 参考訳(メタデータ) (2024-03-13T03:28:39Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
フローマッチングは、連続正規化フロー(CNF)のトレーニングのためのシミュレーション不要なアプローチである
拡散経路を持つFMを用いることで、より堅牢で安定した拡散モデルの代替となることが判明した。
ImageNet上でFlow Matchingを使用したCNFのトレーニングは、可能性とサンプル品質の両方の観点から最先端のパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-10-06T08:32:20Z) - Graphical Residual Flows [2.8597160727750564]
この研究は、可逆的残差ネットワークに基づくグラフィカルフローであるグラフィカル残差フローを導入している。
フローに依存性情報を組み込むアプローチは、これらのフローのヤコビ行列を正確に計算できることを意味します。
論文 参考訳(メタデータ) (2022-04-23T09:57:57Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds [15.476426879806134]
フローベース生成モデルは、同じ次元の2つのランダム変数間の可逆変換からなる。
本論文では,多様体上の正規化フローを学習するための確率的フレームワークであるSoftFlowを提案する。
実験により,SoftFlowは多様体データの固有構造を捕捉し,高品質なサンプルを生成することができることを示した。
提案手法を3次元点雲に適用することにより,フローベースモデルにおける細い構造形成の難しさを軽減する。
論文 参考訳(メタデータ) (2020-06-08T13:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。