論文の概要: DFM: Interpolant-free Dual Flow Matching
- arxiv url: http://arxiv.org/abs/2410.09246v1
- Date: Fri, 11 Oct 2024 20:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:33:30.157605
- Title: DFM: Interpolant-free Dual Flow Matching
- Title(参考訳): DFM:インターポーラントフリーデュアルフローマッチング
- Authors: Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata,
- Abstract要約: モデルベクトル場に関する明示的な仮定を伴わない補間自由二重流れマッチング(DFM)手法を提案する。
SMAPによる教師なし異常検出実験は、最大極度またはFM目標で訓練されたCNFと比較して、DFMの利点を示す。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.
- Abstract(参考訳): 連続正規化フロー(CNF)は、表現力のある無限長アーキテクチャでデータ分散をモデル化することができる。
しかし、このモデリングには、最大極大トレーニング中に通常の微分方程式(ODE)を解くための計算コストのかかるプロセスが含まれる。
最近提案されたフローマッチング(FM)フレームワークは、補間された前方ベクトル場による回帰目標を用いて、トレーニングフェーズを大幅に単純化することができる。
本稿では,モデルベクトル場に関する明示的な仮定を伴わない補間自由二重流れマッチング(DFM)手法を提案する。
DFMは、前方および逆変換の単射性を促進する新しい目的を用いて、前方および逆ベクトル場モデルを最適化する。
SMAPによる非教師付き異常検出実験は、最先端の性能指標を用いて、最大極大またはFM目標で訓練されたCNFと比較して、DFMの利点を示す。
関連論文リスト
- Stream-level flow matching with Gaussian processes [4.935875591615496]
条件付きフローマッチング(CFM)は、連続正規化フロー(CNF)を適合させる訓練アルゴリズムの一群である。
我々は、ストリームに沿った条件付き確率パス、ソースとターゲットのデータペアを接続する遅延パスのインスタンスを定義することで、CFMアルゴリズムを拡張した。
本研究では, CFMの一般化により, 推定限界ベクトル場の分散を適度な計算コストで効果的に低減できることを示す。
論文 参考訳(メタデータ) (2024-09-30T15:47:22Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では,大試料径のFMの収束特性を$p$-Wasserstein 距離で論じる。
我々は、FMが1leq p leq 2$でほぼ最小の収束率を達成できることを確立し、FMが拡散モデルに匹敵する収束率に達するという最初の理論的証拠を示す。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Switched Flow Matching: Eliminating Singularities via Switching ODEs [12.273757042838675]
フローマッチング(FM)のような連続時間生成モデルは、ある分布と別の分布の間を移動する確率経路を構築する。
しかし、推論の間、学習したモデルはフローを正確に統合するために複数のニューラルネットワーク評価を必要とすることが多い。
本研究では,一様の ODE を FM で使用するのに対して,スイッチング ODE による特異性を排除した Switched FM (SFM) を提案する。
論文 参考訳(メタデータ) (2024-05-19T16:21:04Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
我々は,新しいtextbf Optimal Flow Matching (OFM) アプローチを開発し,理論的に正当化する。
これは2次輸送のための直列のOT変位をFMの1ステップで回復することを可能にする。
提案手法の主な考え方は,凸関数によってパラメータ化されるFMのベクトル場の利用である。
論文 参考訳(メタデータ) (2024-03-19T19:44:54Z) - Explicit Flow Matching: On The Theory of Flow Matching Algorithms with Applications [3.5409403011214295]
本稿では,フローベース生成モデルのトレーニングと解析を行うための新しい手法であるExplicit Flow Matching (ExFM)を提案する。
ExFMは、理論的に基礎付けられた損失関数、ExFM損失を利用して、トレーニング中のばらつきを実証的に低減し、より早く収束し、より安定した学習をもたらす。
論文 参考訳(メタデータ) (2024-02-05T17:45:12Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
フローマッチングは、連続正規化フロー(CNF)のトレーニングのためのシミュレーション不要なアプローチである
拡散経路を持つFMを用いることで、より堅牢で安定した拡散モデルの代替となることが判明した。
ImageNet上でFlow Matchingを使用したCNFのトレーニングは、可能性とサンプル品質の両方の観点から最先端のパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-10-06T08:32:20Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。